981 resultados para Correlated response


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the results of an experimental and analytical comparison of the flexural behavior of a high-strength concrete specimen (no conventional reinforcement) with an average plain concrete cube strength of nearly 65 MPa and containing trough shape steel fibers. Trough shape steel fibers with a volume fraction ranging from 0 to 1.5% and having a constant aspect ratio of 80 have been used in this study. Increased toughness and a more ductile stress-strain response were observed with an increase in fiber content, when the fibers were distributed over the full/partial depth of the beam cross section. Based on the tests, a robust analytical procedure has been proposed to establish the required partial depth to contain fiber-reinforced concrete (FRC) so as to obtain the flexural capacity of a member with FRC over the full depth. It is expected that this procedure will help designers in properly estimating the required partial depth of fibers in composite sections for specific structural applications. Empirical and mechanistic relations have also been proposed in this study to establish the load-deflection behavior of high-strength FRC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A trajectory optimization approach is applied to the design of a sequence of open-die forging operations in order to control the transient thermal response of a large titanium alloy billet. The amount of time tire billet is soaked in furnace prior to each successive forging operation is optimized to minimize the total process time while simultaneously satisfying constraints on the maximum and minimum values of the billet's temperature distribution to avoid microstructural defects during forging. The results indicate that a "differential" heating profile is the most effective at meeting these design goals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of an instrumented impact test set-up to evaluate the influence of water ingress on the impact response of a carbon–epoxy (C–E) laminated composite system containing discontinuous buffer strips (BS) has been examined. The data on the BS-free C–E sample in dry conditions are used as reference to compare with the data derived from those immersed in water. The work demonstrated the utility of an instrumented impact test set-up in characterising the response, first owing to the architectural difference due to introduction of buffer strips and then due to the presence of an additional phase in the form of water ingressed into the sample. The presence of water was found to enhance the energy absorption characteristics of the C–E system with BS insertions. It was also noticed that with an increasing number of BS layer insertions, the load–time plots displayed characteristic changes. The ductility indices (DI) were found to display a lower value for the water immersed samples compared to the dry ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wear of metals in dry sliding is dictated by the material response to traction. This is demonstrated by considering the wear of aluminium and titanium alloys. In a regime of stable homogeneous deformation the material approaching the surface from the bulk passes through microprocessing zones of flow, fracture, comminution and compaction to generate a protective tribofilm that retains the interaction in the mild wear regime. If the response leads to microstructural instabilities such as adiabatic shear bands, the near-surface zone consists of stacks of 500 nm layers situated parallel to the sliding direction. Microcracks are generated below the surface to propagate normally away from the surface though microvoids situated in the layers, until it reaches a depth of 10-20 mum. A rectangular laminate debris consisting of a 20-40 layer stack is produced, The wear in this mode is severe.