987 resultados para Continuous optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration and application of a new multi-objective tabu search optimization algorithm for Fluid Structure Interaction (FSI) problems are presented. The aim is to enhance the computational design process for real world applications and to achieve higher performance of the whole system for the four considered objectives. The described system combines the optimizer with a well established FSI solver which is based on the fully implicit, monolithic formuFlation of the problem in the Arbitrary Lagrangian-Eulerian FEM approach. The proposed solver resolves the proposed uid-structure interaction benchmark which describes the self-induced elastic deformation of a beam attached to a cylinder in laminar channel ow. The optimized ow characteristics of the aforementioned geometrical arrangement illustrate the performance of the system in two dimensions. Special emphasis is given to the analysis of the simulation package, which is of high accuracy and is the core of application. The design process identifies the best combination of ow features for optimal system behavior and the most important objectives. In addition, the presented methodology has the potential to run in parallel, which will significantly speed-up the elapsed time. Finite Element Method (FEM), Fluid-Structure Interaction (FSI), Multi-Ojective Tabu search (MOTS2). Copyright © 2013 Tech Science Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aerodynamic design of turbomachinery presents the design optimisation community with a number of exquisite challenges. Chief among these are the size of the design space and the extent of discontinuity therein. This discontinuity can serve to limit the full exploitation of high-fidelity computational fluid dynamics (CFD): such codes require detailed geometric information often available only sometime after the basic configuration of the machine has been set by other means. The premise of this paper is that it should be possible to produce higher performing designs in less time by exploiting multi-fidelity techniques to effectively harness CFD earlier in the design process, specifically by facilitating its participation in configuration selection. The adopted strategy of local multi-fidelity correction, generated on demand, combined with a global search algorithm via an adaptive trust region is first tested on a modest, smooth external aerodynamic problem. Speed-up of an order of magnitude is demonstrated, comparable to established techniques applied to smooth problems. A number of enhancements aimed principally at effectively evaluating a wide range of configurations quickly is then applied to the basic strategy, and the emerging technique is tested on a generic aeroengine core compression system. A similar order of magnitude speed-up is achieved on this relatively large and highly discontinuous problem. A five-fold increase in the number of configurations assessed with CFD is observed. As the technique places constraints neither on the underlying physical modelling of the constituent analysis codes nor on first-order agreement between those codes, it has potential applicability to a range of multidisciplinary design challenges. © 2012 by Jerome Jarrett and Tiziano Ghisu.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel smoke sensor was used to realize smoke feedback control on a diesel engine. The controller design based on a combination of PI control algorithm and the engine performance optimization is described. Experimental results demonstrate how this control system behave to meet both of the speed and smoke requirements during engine transients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cascaded 4×4 SOA switches with on-chip power monitoring exhibit potential for lowpower 16×16 integrated switches. Cascaded operation at 10Gbit/s with an IPDR of 8.5dB and 79% lower power consumption than equivalent all-active switches is reported © 2013 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The viability of Boundary Layer Ingesting (BLI) engines for future aircraft propulsion is dependent on the ability to design robust, efficient engine fan systems for operation with continuously distorted inlet flow. A key step in this process is to develop an understanding of the specific mechanisms by which an inlet distortion affects the performance of a fan stage. In this paper, detailed full-annulus experimental measurements of the flow field within a low-speed fan stage operating with a continuous 60-degree inlet stagnation pressure distortion are presented. These results are used to describe the three-dimensional fluid mechanics governing the interaction between the fan and the distortion and to make a quantitative assessment of the impact on loss generation within the fan. A 5.3 percentage point reduction in stage total-to-total efficiency is observed as a result of the inlet distortion. The reduction in performance is shown to be dominated by increased loss generation in the rotor due to off-design incidence values at its leading edge, an effect which occurs throughout the annulus despite the localised nature of the inlet distortion. Increased loss generation in the stator row is also observed due to flow separations that are shown to be caused by whirl angle distortion at rotor exit. By addressing these losses, it should be possible to achieve improved efficiency in BLI fan systems. Copyright © 2012 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new version of the multiobjective Alliance Algorithm (MOAA) applied to the optimization of the NACA 0012 airfoil section, for minimization of drag and maximization of lift coefficients, based on eight section shape parameters. Two software packages are used: XFoil which evaluates each new candidate airfoil section in terms of its aerodynamic efficiency, and a Free-Form Deformation tool to manage the section geometry modifications. Two versions of the problem are formulated with different design variable bounds. The performance of this approach is compared, using two indicators and a statistical test, with that obtained using NSGA-II and multi-objective Tabu Search (MOTS) to guide the optimization. The results show that the MOAA outperforms MOTS and obtains comparable results with NSGA-II on the first problem, while in the other case NSGA-II is not able to find feasible solutions and the MOAA is able to outperform MOTS. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic algorithms (GAs) have been used to tackle non-linear multi-objective optimization (MOO) problems successfully, but their success is governed by key parameters which have been shown to be sensitive to the nature of the particular problem, incorporating concerns such as the numbers of objectives and variables, and the size and topology of the search space, making it hard to determine the best settings in advance. This work describes a real-encoded multi-objective optimizing GA (MOGA) that uses self-adaptive mutation and crossover, and which is applied to optimization of an airfoil, for minimization of drag and maximization of lift coefficients. The MOGA is integrated with a Free-Form Deformation tool to manage the section geometry, and XFoil which evaluates each airfoil in terms of its aerodynamic efficiency. The performance is compared with those of the heuristic MOO algorithms, the Multi-Objective Tabu Search (MOTS) and NSGA-II, showing that this GA achieves better convergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimization process has been used to design an ultra-low count fan outlet guide vane with an unconventional leading edge profile to reduce the interaction noise. Computational fluid dynamics has been used to predict the aerodynamic and acoustic performance of the stator vane. The final stator design has been built and tested in a representative fan stage rig to determine its tone noise characteristics. The stator vane is found to give significant tone noise reduction at the fundamental blade passing frequency at cut-back in line with design expectations. Detailed comparisons of predicted circumferential and radial modes levels against measured mode detection data are also presented. A good agreement was found between numerical predictions and experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the use of a percolation-field-effect-transistor for the continuous weak measurement of a spatially Rabi oscillating trapped electron through the change in percolation pathway of the transistor channel. In contrast to conventional devices, this detection mechanism in principle does not require a change in the stored energy of the gate capacitance to modify the drain current, so reducing the measurement back-action. The signal-to-noise ratio and measurement bandwidth are seen to be improved compared to conventional devices, allowing further aspects of the dynamic behaviour to be observed. © 2013 AIP Publishing LLC.