983 resultados para Contextual Load Optimization
Resumo:
A two-step viscoelastic spherical indentation method is proposed to compensate for 1) material relaxation and 2) sample thickness. In the first step, the indenter is moved at a constant speed and the reaction force is measured. In the second step, the indenter is held at a constant position and the relaxation response of the material is measured. Then the relaxation response is fit with a multi-exponential function which corresponds to a three-branch general Maxwell model. The relaxation modulus is derived by correcting the finite ramp time introduced in the first step. The proposed model takes into account the sample thickness, which is important for applications in which the sample thickness is less than ten times the indenter radius. The model is validated numerically by finite element simulations. Experiments are carried out on a 10% gelatin phantom and a chicken breast sample with the proposed method. The results for both the gelatin phantom and the chicken breast sample agree with the results obtained from a surface wave method. Both the finite element simulations and experimental results show improved elasticity estimations by incorporating the sample thickness into the model. The measured shear elasticities of the 10% gelatin sample are 6.79 and 6.93 kPa by the proposed finite indentation method at sample thickness of 40 and 20 mm, respectively. The elasticity of the same sample is estimated to be 6.53 kPa by the surface wave method. For the chicken breast sample, the shear elasticity is measured to be 4.51 and 5.17 kPa by the proposed indentation method at sample thickness of 40 and 20 mm, respectively. Its elasticity is measured by the surface wave method to be 4.14 kPa. © 2011 IEEE.
Resumo:
The aim of this paper is to propose a novel reference framework that can be used to study how different kinds of innovation can result in better business performance and how external factors can influence both the firm's capacity to innovate and innovation itself. The value of the framework is demonstrated as it is applied in an exploratory study of the perceptions of public policy makers and managers from two European regions - the Veneto Region in Italy and the East of England in the UK. Amongst other things, the data gathered suggest that managers are generally less convinced than public policy makers, that the innovativeness of a firm is affected by factors over which policy makers have some control. This finding poses the question "what, if any, role can public policy makers play in enhancing a company's competitiveness by enabling it to become more innovative?".
Resumo:
This paper describes the optimization of dose of methyltestosteronei (MT) hormone for masculinization of tilapia (Oreochromis niloticus). Five treatments (i.e. T1 T2, T2, T4 and T5) with different doses such as 0, 40, 50, 60 and 65 mg of MT hormone were mixed with per kg of feed for each treatment and fed the fry four times a day up to satiation for a period of 30 days. The stocking density was maintained 10 spawn/liter of water. The growth of fry at different treatments was recorded weekly and mortality was recorded daily. At the end of hormone feeding the fry were reared in hapas fixed in ponds for another 70 days and at the 100th day the fish were sexed by the gonad squashing and aceto-carmine staining method. The analysis of growth data did not show any significant variation in length and weight of fish among the different treatments. High mortality of fry ranging 66% to 81.6% was observed in different treatments and highest mortality was observed during the first twelve days of the experiment. The sex ratio analysis showed that T2 (40 mg/kg) and T5 (65 mg/kg) produced 93.33% of sex reversed male and T3 (50 mg/kg) and T4 (60 mg/kg) produced 96.66% sex reversed male, and these ratios were significantly (p<0.05) different from 1:1 male: female sex ratio. The control, T1 (0 mg/kg) contained 43.33% male progeny. From these results it is suggested that either 50 mg/kg or 60 mg/kg of MT with a feeding period of 30 days could be considered as an optimum dose for masculinization of tilapia (O. niloticus).