998 resultados para Containing Mcm-41
Resumo:
Pseudomonas syringae pv. phaseolicola is the seed borne causative agent of halo blight in the common bean Phaseolus vulgaris. Pseudomonas syringae pv. phaseolicola race 4 strain 1302A contains the avirulence gene hopAR1 (located on a 106-kb genomic island, PPHGI-1, and earlier named avrPphB), which matches resistance gene R3 in P. vulgaris cultivar Tendergreen (TG) and causes a rapid hypersensitive reaction (HR). Here, we have fluorescently labeled selected Pseudomonas syringae pv. phaseolicola 1302A and 1448A strains (with and without PPHGI-1) to enable confocal imaging of in-planta colony formation within the apoplast of resistant (TG) and susceptible (Canadian Wonder [CW]) P. vulgaris leaves. Temporal quantification of fluorescent Pseudomonas syringae pv. phaseolicola colony development correlated with in-planta bacterial multiplication (measured as CFU/ml) and is, therefore, an effective means of monitoring Pseudomonas syringae pv. phaseolicola endophytic colonization and survival in P. vulgaris. We present advances in the application of confocal microscopy for in-planta visualization of Pseudomonas syringae pv. phaseolicola colony development in the leaf mesophyll to show how the HR defense response greatly affects colony morphology and bacterial survival. Unexpectedly, the presence of PPHGI-1 was found to cause a reduction of colony development in susceptible P. vulgaris CW leaf tissue. We discuss the evolutionary consequences that the acquisition and retention of PPHGI-1 brings to Pseudomonas syringae pv. phaseolicola in planta.
Resumo:
The ability of the standard pre-enrichment procedure in buffered peptone water (BPW) to recover Salmonella Typhimurium from acidic marinade sauces containing spices was tested by inoculating marinade sauces with known numbers of an antibiotic-resistant marker strain of Salmonella Typhimurium DT104 prior to pre-enrichment. Viable numbers of salmonellae present in BPW after 24h incubation depended on the inoculum level. If initial cell numbers were low (below 103 cfu per 250 ml BPW) final cell concentrations were also low and, in some cases, no growth occurred. The problem was overcome by use of double-strength BPW that neutralised the acidity and allowed good recovery from otherwise inhibitory marinade sauces.
Resumo:
The self-assembly of PEGylated peptides containing a modified sequence from the amyloid beta peptide, FEK LVFF, has been studied in aqueous solution. PEG molar masses PEG1k, PEG2k, and PEG10k were used in the conjugates. It is shown that the three FFK LVFF-PEG hybrids form fibrils comprising a FFKLVFF core and a PEG corona. The beta-sheet secondary structure of the peptide is retained in the FFK LVFF fibril core. At sufficiently high concentrations, FEK LVFF-PEG1k and FEK LVFF-PEG2k form a nema tic phase, while PEG10k-FEK LVFF exhibits a hexagonal columnar phase. Simultaneous small angle neutron scattering/shear flow experiments were performed to study the shear flow alignment of the nematic and hexagonal liquid crystal phases. On drying, PEG crystallization occurs without disruption of the FFK LVFF beta-sheet structure leading to characteristic peaks in the X-ray diffraction pattern and FTIR spectra. The stability of beta-sheet structures was also studied in blends of FFKLVFF-PEG conjugates with poly(acrylic acid) (PAA). While PEG crystallization is only observed up to 25% PAA content in the blends, the FFK LVFF beta-sheet structure is retained up to 75% PAA.
Resumo:
We study the complex formation of a peptide betaAbetaAKLVFF, previously developed by our group, with Abeta(1–42) in aqueous solution. Circular dichroism spectroscopy is used to probe the interactions between betaAbetaAKLVFF and Abeta(1–42), and to study the secondary structure of the species in solution. Thioflavin T fluorescence spectroscopy shows that the population of fibers is higher in betaAbetaAKLVFF/Abeta(1–42) mixtures compared to pure Abeta(1–42) solutions. TEM and cryo-TEM demonstrate that co-incubation of betaAbetaAKLVFF with Abeta(1–42) causes the formation of extended dense networks of branched fibrils, very different from the straight fibrils observed for Abeta(1–42) alone. Neurotoxicity assays show that although betaAbetaAKLVFF alters the fibrillization of Abeta(1–42), it does not decrease the neurotoxicity, which suggests that toxic oligomeric Abeta(1–42) species are still present in the betaAbetaAKLVFF/Abeta(1–42) mixtures. Our results show that our designed peptide binds to Abeta(1–42) and changes the amyloid fibril morphology. This is shown to not necessarily translate into reduced toxicity.
Resumo:
The self-assembly of a peptide based on a sequence from the amyloid beta peptide but incorporating the non-natural amino acid beta-2-thienylalanine (2-Thi) has been investigated in aqueous and methanol solutions. The peptide AAKLVFF was used as a design motif, replacing the phenylalanine residues (F) with 2-Thi units to yield (2-Thi)(2-Thi)VLKAA. The 2-Thi residues are expected to confer interesting electronic properties due to charge delocalization and pi-stacking. The peptide is shown to form beta-sheet-rich amyloid fibrils with a twisted morphology, in both water and methanol solutions at sufficiently high concentration. The formation of a self-assembling hydrogel is observed at high concentration. Detailed molecular modeling using molecular dynamics methods was performed using NOE constraints provided by 2D-NMR experiments. The conformational and charge properties of 2-Thi were modeled using quantum mechanical methods, and found to be similar to those previously reported for the beta-3-thienylalanine analogue. The molecular dynamics simulations reveal well-defined folded structures (turn-like) in dilute aqueous solution, driven by self-assembly of the hydrophobic aromatic units, with charged lysine groups exposed to water.
Resumo:
A new 3-D zinc phosphate, [C5N2H14][Zn-2(PO3(OH))(3)], has been synthesised under solvothermal conditions in the presence of 1-methylpiperazine. The structure, determined by single-crystal X-ray diffraction at 293 K (RMM = 520.9, orthorhombic, space group P2(1)2(1)2(1); a = 10.0517(2) &ANGS;, b = 10.4293(2) &ANGS; and c = 14.9050(5) &ANGS;; V = 1562.52 &ANGS;(3); Z = 4; R(F) = 2.60%, wR(F) = 2.93%), consists of vertex linked ZnO4 and PO3(OH) tetrahedra assembled into (4.8) net sheets which in turn are linked through further PO3(OH) units to generate a 3-D framework. 1-Methylpiperazinium cations reside within the 3-D channel system, held in place by a strong network of hydrogen bonds. The (4.8) net sheets occur in a number of zeolite structures e.g. ABW and GIS and related zinc phosphate phases. © 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
Resumo:
In order to build up a multicomponent system able to perform useful light-induced functions, a dithienylethene-bridged heterodinuclear metal complex (Ru/Os) has been prepared. The compound was characterized and its photophysical properties studied in detail.
Resumo:
The lithium salt of the anionic SPS pincer ligand composed of a central hypervalent lambda(4)-phosphinine ring bearing two ortho-positioned diphenylphosphine sulfide side arms reacts with [Mn(CO)(5)Br] to give fac-[Mn(SPS)(CO)(3)], This isomer can be converted photochemicaily to mer-[Mn(SPS)(CO)(3)], with a very high quantum yield (0.80 +/- 0.05). The thermal backreaction is slow (taking ca. 8 h at room temperature), in contrast to rapid electrodecatalyzed mer-to-fac isomerization triggered by electrochemical reduction of mer-[Mn(SPS)(CO)(3)]. Both geometric isomers of [Mn(SPS)(CO)(3)] have been characterized by X-ray crystallography. Both isomers show luminescence from a low-lying (IL)-I-3 (SPS-based) excited state. The light emission of fac-[Mn(SPS)(CO)(3)] is largely quenched by the efficient photoisomerization occurring probably from a low-lying Mn-CO dissociative excited state. Density functional theory (DFT) and time-dependent DFT calculations describe the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of fac- and mer-[Mn(CO)(3)(SPS)] as ligand-centered orbitals, largely localized on the phosphinine ring of the SPS pincer ligand. In line with the ligand nature of its frontier orbitals, fac-[Mn(SPS)(CO)(3)] is electrochemically reversibly oxidized and reduced to the corresponding radical cation and anion, respectively. The spectroscopic (electron paramagnetic resonance, IR, and UV-vis) characterization of the radical species provides other evidence for the localization of the redox steps on the SIPS ligand. The smaller HOMO-LUMO energy difference in the case of mer-[Mn(CO)(3)(SPS)], reflected in the electronic absorption and emission spectra, corresponds with its lower oxidation potential compared to that of the fac isomer. The thermodynamic instability of mer-[Mn(CO)(3)(SPS)], confirmed by the DFT calculations, increases upon one-electron reduction and oxidation of the complex.
Resumo:
Efficient photocyclization from a low-lying triplet state is reported for a photochromic dithienylperfluorocyclopentene with Ru(bpy)(3) units attached via a phenylene linker to the thiophene rings. The ring-closure reaction in the nanosecond domain is sensitized by the metal complexes. Upon photoexcitation into the lowest Ru-to-bpy (MLCT)-M-1 state followed by intersystem crossing to emitting (MLCT)-M-3 states, photoreactive (IL)-I-3 states are populated by an efficient energy-transfer process. The involvement of these (IL)-I-3 states explains the quantum yield of the photocyclization, which is independent of the excitation wavelength but decreases strongly in the presence of dioxygen. This behavior differs substantially from the photocyclization of the nonemissive dithienylperfluorocyclopentene free ligand, which occurs from the lowest (IL)-I-1 state on a picosecond time scale and is insensitive to oxygen quenching. Cyclic voltammetric studies have also been performed to gain further insight into the energetics of the system. The very high photocyclization quantum yields, far above 0.5 in both cases, are ascribed to the strong steric repulsion between the bulky substituents on the dithienylperfluorocyclopentene bridge bearing the chelating bipyridine sites or the Ru(bpy)(3) moieties, forcing the system to adopt nearly exclusively the reactive antiparallel conformation. In contrast, replacement of both Ru(II) centers by Os(II) completely prevents the photocyclization reaction upon light excitation into the low-lying Os-to-bpy (MLCT)-M-1 state. The photoreaction can only be triggered by optical population of the higher lying (IL)-I-1 excited state of the central photochromic unit, but its yield is low due to efficient energy transfer to the luminescent lowest (MLCT)-M-3 state.
Resumo:
The present study aimed to determine the prebiotic effect of fruit and vegetable shots containing inulin derived from Jerusalem artichoke (JA). A three-arm parallel, placebo-controlled, double-blind study was carried out with sixty-six healthy human volunteers (thirty-three men and thirty-three women, age range: 18–50 years). Subjects were randomised into three groups (n 22) assigned to consume either the test shots, pear-carrot-sea buckthorn (PCS) or plum-pear-beetroot (PPB), containing JA inulin (5 g/d) or the placebo. Fluorescent in situ hybridisation was used to monitor populations of total bacteria, bacteroides, bifidobacteria, Clostridium perfringens/histolyticum subgroup, Eubacterium rectale/Clostridium coccoides group, Lactobacillus/Enterococcus spp., Atopobium spp., Faecalibacterium prausnitzii and propionibacteria. Bifidobacteria levels were significantly higher on consumption of both the PCS and PPB shots (10·0 (sd 0·24) and 9·8 (sd 0·22) log10 cells/g faeces, respectively) compared with placebo (9·3 (sd 0·42) log10 cells/g faeces) (P < 0·0001). A small though significant increase in Lactobacillus/Enterococcus group was also observed for both the PCS and PPB shots (8·3 (sd 0·49) and 8·3 (sd 0·36) log10 cells/g faeces, respectively) compared with placebo (8·1 (sd 0·37) log10 cells/g faeces) (P = 0·042). Other bacterial groups and faecal SCFA concentrations remained unaffected. No extremities were seen in the adverse events, medication or bowel habits. A slight significant increase in flatulence was reported in the subjects consuming the PCS and PPB shots compared with placebo, but overall flatulence levels remained mild. A very high level of compliance (>90 %) to the product was observed. The present study confirms the prebiotic efficacy of fruit and vegetable shots containing JA inulin.
Resumo:
The ligand 2,2'-[(E)-diazene-1,2-diyldicarbonothioyl]diphenol has been synthesised in situ by aerial oxidation of o-hydroxythiobenzhydrazide [H(htbh)] in presence of rhodium(III) in DMSO. Each ligand binds two RhO2+ ions through its N and S atoms and the O atom of its deprotonated hydroxy group. Each RhO2+ contains two cis-Rh = O bonds. The sixth coordination site of each rhodium(v) is occupied by the O of DMSO.
Resumo:
Single-crystal X-ray diffraction studies of two terminally protected tetrapeptides Boc-Ile-Aib-Val-m-ABA-OMe (I) and Boc-Ile-Aib-Phe-m-ABA-OMe (II) (Aib = alpha-aminoisobutyric acid; m-ABA = meta-aminobenzoic acid) reveal that they form continuous H-bonded helices through the association of double-bend (type III and I) building blocks. NMR Studies support the existence of the double-bend (type Ill and I) structures of the peptides in solution also. Field emission scanning electron-microscopic (FE-SEM) and high-resolution transmission electron-microscopic (HR-TEM) images of the peptides exhibit amyloid-like fibrils in the solid state. The Congo red-stained fibrils of peptide I and II, observed between crossed polarizers, show green-gold birefringence, a characteristic of amyloid fibrils.
Resumo:
In situ analysis has become increasingly important for contaminated land investigation and remediation. At present, portable techniques are used mainly as scanning tools to assess the spread and magnitude of the contamination, and are an adjunct to conventional laboratory analyses. A site in Cornwall, containing naturally occurring radioactive material (NORM), provided an opportunity for Reading University PhD student Anna Kutner to compare analytical data collected in situ with data generated by laboratory-based methods. The preliminary results in this paper extend the author‟s poster presentation at last September‟s GeoSpec2010 conference held in Lancaster.
Resumo:
An unusual hexanuclear Cu-II complex, [{[Cu(NHDEPO)](3)(mu(3)-O)(O3ClO)}(2)(mu-H)]center dot 7ClO(4)center dot 4H(2)O (1) was prepared starting from Cu(ClO4)(2)center dot 6H(2)O and the oxime-based Schiff base ligand NHDEPO (= 3-[3-(diethylamino)propylimino]butan-2-one oxime). Structural characterization of the complex reveals that it consists of two triangular Cu3O units, the copper ions being at the corners of an equilateral triangle, separated by an O center dot center dot center dot O distance of 2,447(5) angstrom, held together solely by a proton. In each triangle, the copper atoms are in square-pyramid environments. The equatorial plane consists of the bridging oxygen of the central OH-(O2-) group together with three atoms (N, N, O) of the Schiff base. All Unusual triply coordinated perchlorate ion (mu(3)-kappa O:kappa O':kappa O '') interacts in axial position with the three copper ions, Variable-temperature (2-300 K) magnetic susceptibility measurements show that complex 1 is antiferromagnetically Coupled (J = -148 cm(1-)). The EPR data at low temperature clearly indicates the presence of spin frustration phenomenon in the complex.
Resumo:
Two new mono-aqua-bridged dinuclear Cu(II) complexes of tridentate NNO Schiff bases, [Cu-2(mu-H2O)L-2(1)(H2O)(2)](BF4)(2)center dot 2H(2)O (1) and [Cu-2(mu-H2O)L-2(2)(H2O)(2)](BF4)(2)center dot 2H(2)O (2) where HL1 = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol and HL2 =2-[(2-dimethylamino-ethylimino)-methyl]-phenol were synthesized. Both the complexes were characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. For both the complexes each Cu(II) ion is in a square-pyramidal environment being bonded to three atoms from the tridentate NNO Schiff base and a terminal H2O molecule in the equatorial plane; a second H2O ligand acts as a bridge between the two Cu(II) centres through the axial positions. Hydrogen bonds between the terminal H2O ligand and the Schiff base of the adjacent centre complete the intra-dimer linkages. Variable-temperature (4-300 K) magnetic susceptibility measurement shows the presence of significant antiferromagnetic coupling for both the complexes (J = -12.2 and -12.5 cm(-1), respectively, for 1 and 2), mediated mainly through the intra-dimer H-bonds.