984 resultados para Conservation benefits
Resumo:
Season-long monitoring of on-farm rice (Oryza sativa, L.) plots in Nepal explored farmers' decision-making process on the deployment of varieties to agroecosystems, application of production inputs to varieties, agronomic practices and relationship between economic return and area planted per variety. Farmers deploy varieties [landraces (LRs) and modern varieties (MVs)] to agroecosystems based on their understanding of characteristics of varieties and agroecosystems, and the interaction between them. In marginal growing conditions, LRs can compete with MVs. Within an agroecosystem, economic return and area planted to varieties have positive relationship, but this is not so between agroecosystems. LRs are very diverse on agronomic and economic traits; therefore, they cannot be rejected a priori as inferior materials without proper evaluation. LRs have to be evaluated for useful traits and utilized in breeding programmes to generate farmer-preferred materials for marginal environments and for their conservation on-farm.
Resumo:
We study the global atmospheric budgets of mass, moisture, energy and angular momentum in the latest reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF), ERA-Interim, for the period 1989–2008 and compare with ERA-40. Most of the measures we use indicate that the ERA-Interim reanalysis is superior in quality to ERA-40. In ERA-Interim the standard deviation of the monthly mean global dry mass of 0.7 kg m−2 (0.007%) is slightly worse than in ERA-40, and long time-scale variations in dry mass originate predominately in the surface pressure field. The divergent winds are improved in ERA-Interim: the global standard deviation of the time-averaged dry mass budget residual is 10 kg m−2 day−1 and the quality of the cross-equatorial mass fluxes is improved. The temporal variations in the global evaporation minus precipitation (E − P) are too large but the global moisture budget residual is 0.003 kg m−2 day−1 with a spatial standard deviation of 0.3 kg m−2 day−1. Both the E − P over ocean and P − E over land are about 15% larger than the 1.1 Tg s−1 transport of water from ocean to land. The top of atmosphere (TOA) net energy losses are improved, with a value of 1 W m−2, but the meridional gradient of the TOA net energy flux is smaller than that from the Clouds and the Earth's Radiant Energy System (CERES) data. At the surface the global energy losses are worse, with a value of 7 W m−2. Over land however, the energy loss is only 0.5 W m−2. The downwelling thermal radiation at the surface in ERA-Interim of 341 W m−2 is towards the higher end of previous estimates. The global mass-adjusted energy budget residual is 8 W m−2 with a spatial standard deviation of 11 W m−2, and the mass-adjusted atmospheric energy transport from low to high latitudes (the sum for the two hemispheres) is 9.5 PW
Resumo:
Unless the benefits to society of measures to protect and improve the welfare of animals are made transparent by means of their valuation they are likely to go unrecognised and cannot easily be weighed against the costs of such measures as required, for example, by policy-makers. A simple single measure scoring system, based on the Welfare Quality® index, is used, together with a choice experiment economic valuation method, to estimate the value that people place on improvements to the welfare of different farm animal species measured on a continuous (0-100) scale. Results from using the method on a survey sample of some 300 people show that it is able to elicit apparently credible values. The survey found that 96% of respondents thought that we have a moral obligation to safeguard the welfare of animals and that over 72% were concerned about the way farm animals are treated. Estimated mean annual willingness to pay for meat from animals with improved welfare of just one point on the scale was £5.24 for beef cattle, £4.57 for pigs and £5.10 for meat chickens. Further development of the method is required to capture the total economic value of animal welfare benefits. Despite this, the method is considered a practical means for obtaining economic values that can be used in the cost-benefit appraisal of policy measures intended to improve the welfare of animals.
Resumo:
With the increasing frequency and magnitude of warmer days during the summer in the UK, bedding plants which were a traditional part of the urban green landscape are perceived as unsustainable and water-demanding. During recent summers when bans on irrigation have been imposed, use and sales of bedding plants have dropped dramatically having a negative financial impact on the nursery industry. Retaining bedding species as a feature in public and even private spaces in future may be conditional on them being managed in a manner that minimises their water use. Using Petunia x hybrida ‘Hurrah White’ we aimed to discover which irrigation approach was the most efficient for maintaining plants’ ornamental quality (flower numbers, size and longevity), shoot and root growth under water deficit and periods of complete water withdrawal. Plants were grown from plugs for 51 days in wooden rhizotrons (0.35 m (h) x 0.1 m (w) x 0.065 m (d)); the rhizotrons’ front comprised clear Perspex which enabled us to monitor root growth closely. Irrigation treatments were: 1. watering with the amount which constitutes 50% of container capacity by conventional surface drip-irrigation (‘50% TOP’); 2. 50% as sub-irrigation at 10 cm depth (‘50% SUB’); 3. ‘split’ irrigation: 25% as surface drip- and 25% as sub-irrigation at 15 cm depth (‘25/25 SPLIT’); 4. 25% as conventional surface drip-irrigation (‘25% TOP’). Plants were irrigated daily at 18:00 apart from days 34-36 (inclusive) when water was withdrawn for all the treatments. Plants in ‘50% SUB’ had the most flowers and their size was comparable to that of ‘50% TOP’. Differences between treatments in other ‘quality’ parameters (height, shoot number) were biologically small. There was less root growth at deeper soil surface levels for ‘50% TOP’ which indicated that irrigation methods like ‘50% SUB’ and ‘25/25 SPLIT’ and stronger water deficits encouraged deeper root growth. It is suggested that sub-irrigation at 10 cm depth with water amounts of 50% container capacity would result in the most root growth with the maximum flowering for Petunia. Leaf stomatal conductance appeared to be most sensitive to the changes in substrate moisture content in the deepest part of the soil profile, where most roots were situated.