992 resultados para Conductive wires


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperature changes in conducting polypyrrole/para-toluene-2-sulphonic acid (PPy/pTSA) coated nylon textiles due to microwave absorption in the 8–9 GHz and 15–16 GHz frequency ranges were obtained by a thermography station during simultaneous irradiation of the samples. The temperature values are compared and related to the amounts of reflection, transmission and absorption obtained with a non-contact free space transmission technique, indicating a relationship between microwave absorption and temperature increase. Non-conductive samples showed no temperature increase upon irradiation irrespective of frequency range. The maximum temperature difference of around 4 °C in the conducting fabrics relative to ambient temperature was observed in samples having 48% absorption and 26.5 ± 4% reflection. Samples polymerized for 60 or 120 min with a dopant concentration of 0.018 mol/l or polymerized for 180 min with a dopant concentration of 0.009 mol/l yielded optimum absorption levels. As the surface resistivity decreased and the reflection levels increased, the temperature increase upon irradiation reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conductive textile yarns were prepared by a continuous vapor polymerization method; the application of polypyrrole by the continuous vapor polymerization method used is designed for the easy adaptation into industrial procedures. The resultant conductive yarns were examined by longitudinal and cross-sectional views, clearly showing the varying levels of penetration of the polymer into the yarn structure. It was found that for wool the optimum specific resistance was achieved by using the 400 TPM yarn with a FeCl3 solution concentration of 80 g/L FeCl3 to produce 1.69 Ω g/cm2. For cotton yarn, the optimum specific resistance of 1.53 Ω g/cm2 was obtained with 80 g/L of a FeCl3 solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An abrasion-resistant, electrically conductive material comprising a natural fibre-containing substrate and an electrically conductive conjugated polymer coating thereon is disclosed. A process for preparing an abrasion-resistant, electrically conductive material is also disclosed. The process comprises providing at least one monomer capable of forming an electrically conductive conjugated polymer, and a suitable substrate having a substrate surface, subjecting the substrate surface to a surface treatment step to improve abrasion resistance, and exposing the substrate surface to a vapour of the monomer to form an electrically conductive conjugated polymer coating thereon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long term performance of conductivity of p-toluene sulfonic acid (pTSA) doped electrochemically synthesized polypyrrole (PPy) films was estimated from accelerated aging studies between 80 °C and 120 °C. Conductivity decay experiments indicated that overall aging behavior of PPy films deviated from first order kinetics at prolonged aging times at elevated temperatures. However, an approximate value for the activation energy of the conductivity decay of PPy was calculated as E=47.4 kJ/mol, enabling an estimate of a rate constant of k=8.35×10−6/min at 20 °C. The rate of decrease of conductivity was not only temperature dependent but also influenced by the dopant concentration. A concentration of 0.005 M pTSA in the electrolyte resulted in a conductive film and when this film was exposed to 120 °C for a period of 40 h, the conductivity decayed to about 1/20 of its original value. The concentration of pTSA was increased to 0.05 mol/l and when the resulting film was aged in the same way, it showed a decrease in the conductivity to about 1/3 of its original value. Both microwave transmission and dc conductivity data revealed that highly doped films were considerably more electrically stable than lightly doped films. The dopant had a preserving effect on the electrical properties of PPy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-Assembly Monolayer (SAM) technique, as a novel and developing technique for fabricating layer-by-layer nanofilm on substrates of various sizes, shapes and materials, has received more and more attention in the areas of light-emitting devices, nonlinear optical materials, conductive films, permselective gas membranes, sensors, modification of electrodes, resistance and printing technique. In comparison with other traditional methods, SAM technique has many significant advantages, including simple process, universality, formation with densely packed, well defined, highly ordered surfaces. This paper will give a review on the recent development in SAM technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on some physical properties of a conducting polymer, polypyrrole, coated textiles. Polypyrrole was coated on textiles chemically through in-situ solution or vapor polymerisation to produce conducting textiles. The effects of the conductive coating on the physical and mechanical properties of the fibrous materials are presented. The coating durability and conductivity of the textiles have also been examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research developed non-hazardous methods for coating wool with conductive polymers for thermal and anti-static clothing. Conductive polymers are black in colour, thus the synthesis of new conductive polymers was required to produce coloured or fluorescent conductive textile. Cross-linked conductive polymers were also synthesised to increase their durability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents the dielectrophoretic (DEP) assembly of multi-walled carbon nanotubes (MWCNTs) between curved microelectrodes for the purpose of trapping polystyrene microparticles within a microfluidic system. Under normal conditions, polystyrene particles exhibit negative DEP behaviour and are repelled from microelectrodes. Interestingly, the addition of MWCNTs to the system alters this situation in two ways: first, they coat the surface of particles and change their dielectric properties to exhibit positive DEP behaviour; second, the assembled MWCNTs are highly conductive and after the deposition serve as extensions to the microelectrodes. They establish an array of nanoelectrodes that initiates from the edge of microelectrodes and grow along the electric field lines. These nanoelectrodes can effectively trap the MWCNT-coated particles, since they cover a large portion of the microchannel bottom surface and also create a much stronger electric field than the primary microelectrodes as confirmed by our numerical simulations. We will show that the presence of MWCNT significantly changes performance of the system, which is investigated by trapping sample polystyrene particles with plain, COOH and goat anti-mouse IgG surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical synthesis of a tri-layer polypyrrole based actuator optimized for performance was reported. The 0.05 M pyrrole and 0.05 M tetrabutylammonium hexaflurophosphate in propylene carbonate (PC) yielded the optimum performance and stability. The force produced ranged from 0.2 to 0.4mN. Cyclic deflection tests on PC based actuators for 3 hours indicated that the displacement decreased by 60%. PC based actuator had a longer operating time, exceeding 3 hours, compared to acetonitrile based actuators. A triple-layer model of the polymer actuator was developed based on the classic bending beam theory by considering strain electrode material. A tri-layer actuator was fabricated [4, 6], by initially sputter coating a PVDF film with approximately 100nm of gold layer, resulting in a conductive film with a surface resistance of 8-10Ω. The PVDF film was about ~145µm thick had an approximate pore size of 45μm. A solution containing 0.05M distilled pyrrole monomer, 0.05M (TBAPF6) and 1% (w/w) distilled water in PC (propylene carbonate) solution was purged with nitrogen for 15 minutes. The continuity between PPy and PVDF. Results predicted by the model were in good agreement with the experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gel polymer electrolytes were prepared by immersing a porous poly(vinylidene fluoride-co-hexafluoropropylene) membrane in an electrolyte solution containing small amounts of organic additive. Three kinds of organic compounds, thiophene, 3,4-ethylenedioxythiophene and biphenyl, were used as a polymerizable monomeric additive. The organic additives were found to be electrochemically oxidized to form conductive polymer films on the electrode at high potential. By using the gel polymer electrolytes containing different organic additive, lithium metal polymer cells, composed of lithium anode and LiCoO2 cathode, were assembled and their cycling performance evaluated. Adding small amounts of a suitable polymerizable additive to the gel polymer electrolyte was found to reduce the interfacial resistance in the cell during cycling, and it thus exhibited less capacity fade and better high rate performance. Differential scanning calorimetric studies showed that the thermal stability of the fully charged LiCoO2 cathode was improved in the cell containing an organic additive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nano-particle oxide fillers including TiO2, SiO2 and Al2O3 have previously been shown to have a significant affect on the properties of polymer electrolytes, especially those based on polyether–lithium salt systems. In some cases, conductivity increases of more than one order of magnitude have been reported in crystalline PEO-based complexes. In this work, we report on the effects of TiO2 on a completely amorphous polyether-based system to remove the complication of multiple phases presented by the semi-crystalline nature of PEO. Multinuclear magnetic resonance spectroscopy has shown that the lithium ion environment is changed by the addition of filler. Vibrational spectroscopy shows that the filler influences the disordered-longitudinal acoustic modes (DLAM) in the case of an amorphous polyether and suggests an interaction between the filler surface and the polymer. Positron annihilation lifetime spectroscopy indicates an increase in free volume upon addition of filler to an amorphous polyether–salt complex, coinciding with an apparent increase in polymer mobility as determined from 1H T2 NMR measurements. Impedance spectroscopy has shown clear evidence of an inter-phase region that may be more or less conductive than the bulk polymer electrolyte itself. The data support a model which includes conduction through an interfacial region in addition to the bulk polymer

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ambient temperature conductive plastic crystal phases of alkylmethylpyrrolidinium trifluoromethanesulfonyl amide (TFSA) salts are studied using positron annihilation lifetime spectroscopy (PALS) to examine the role of vacancy size and concentration in conductivity. The ethyl methylpyrrolidinium TFSA salt (P12 TFSA) has larger vacancies and a greater concentration of vacancies than the dimethylpyrrolidinium TFSA salt (P11 TFSA) over the temperature range investigated. The relative vacancy size and concentration vary with temperature and reflect the solid–solid transitions as measured by differential scanning calorimetry (DSC). P12 TFSA has greater conductivity than P11 TFSA and has furthermore been observed to exhibit slip planes at room temperature. P12 TFSA has greater entropy changes associated with solid–solid phase transitions below the melting point than P11 TFSA possibly indicating greater rotational freedom in P12 TFSA. These results support the notion that the diffusion, conduction, and plastic flow properties of the pyrrolidinium TFSA salts are derived from the lattice vacancies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The properties of the binary salt system based on mixtures of methyl ethyl pyrrolidinium bis(trifluoromethane sulfonyl) imide (P12) and lithium bis(trifluoromethane sulfonyl) imide (Li imide) are reported. The lithium containing mixtures were found to be more than two orders of magnitude more conductive than the parent P12 phase and the 33 mol% Li imide systems showed a solid state conductivity around 1×10−4 S/cm at 20°C. This solid state conductivity is believed to take place in plastic crystal phases of the P12 compound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doping of lithium salts and acids into the plastic crystal phase of succinonitrile has shown for the first time of the possibility of creating solid state electrolytes based on plastic crystalline solvents where the matrix itself is neutral and hence not intrinsically conductive. These materials illustrate the concept of a solid state electrolyte solvent. Room temperature conductivities up to 3.4×10−4 S cm−1 were obtained with 5 wt.% lithium bis(trifluoromethanesulfonylamide) in succinonitrile. Pulsed field gradient NMR measurements indicate that both cation and anion are mobile in this lattice. Proton conductivity was also observed when methane sulfonic acid or glacial acetic acid was used as dopants, however, the conductivity in these systems is limited by the poor dissociating ability of these acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plastic crystal materials have long been known but have only relatively recently become of interest as solid–state ion conductors. Their properties are often associated with dynamic orientational disorder or rotator motions in the crystalline lattice. This paper describes recent work in the field including the range of organic ionic compounds that exhibit ion conduction at room temperature. Conductivity in some cases is high enough to render the compounds of interest as electrolyte materials in all solid state electrochemical devices. Doping of the plastic crystal phase with a small ion such as Li+ in some cases produces an even higher conductivity. In this case the plastic crystal acts as a solid state “solvent” for the doped ion and supports the conductive motion of the dopant via motions of the matrix ions. These doped materials are also described in detail.