996 resultados para Code uses


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project addresses the unreliability of operating system code, in particular in device drivers. Device driver software is the interface between the operating system and the device's hardware. Device drivers are written in low level code, making them difficult to understand. Almost all device drivers are written in the programming language C which allows for direct manipulation of memory. Due to the complexity of manual movement of data, most mistakes in operating systems occur in device driver code. The programming language Clay can be used to check device driver code at compile-time. Clay does most of its error checking statically to minimize the overhead of run-time checks in order to stay competitive with C's performance time. The Clay compiler can detect a lot more types of errors than the C compiler like buffer overflows, kernel stack overflows, NULL pointer uses, freed memory uses, and aliasing errors. Clay code that successfully compiles is guaranteed to run without failing on errors that Clay can detect. Even though C is unsafe, currently most device drivers are written in it. Not only are device drivers the part of the operating system most likely to fail, they also are the largest part of the operating system. As rewriting every existing device driver in Clay by hand would be impractical, this thesis is part of a project to automate translation of existing drivers from C to Clay. Although C and Clay both allow low level manipulation of data and fill the same niche for developing low level code, they have different syntax, type systems, and paradigms. This paper explores how C can be translated into Clay. It identifies what part of C device drivers cannot be translated into Clay and what information drivers in Clay will require that C cannot provide. It also explains how these translations will occur by explaining how each C structure is represented in the compiler and how these structures are changed to represent a Clay structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central nervous system (CNS) is an immunologically privileged site to which access of circulating immune cells is tightly controlled by the endothelial blood-brain barrier (BBB; see Glossary) localized in CNS microvessels, and the epithelial blood-cerebrospinal fluid barrier (BCSFB) within the choroid plexus. As a result of the specialized structure of the CNS barriers, immune cell entry into the CNS parenchyma involves two differently regulated steps: migration of immune cells across the BBB or BCSFB into the cerebrospinal fluid (CSF)-drained spaces of the CNS, followed by progression across the glia limitans into the CNS parenchyma. With a focus on multiple sclerosis (MS) and its animal models, this review summarizes the distinct molecular mechanisms required for immune cell migration across the different CNS barriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical studies of the problems of the securities markets in the Russian Federation incline to one or other of the two traditional approaches. The first consists of comparing the definition of "valuable paper" set forth in the current legislation of the Russian Federation, with the theoretical model of "Wertpapiere" elaborated by German scholars more than 90 years ago. The problem with this approach is, in Mr. Pentsov's opinion, that any new features of the definition of "security" that do not coincide with the theoretical model of "Wertpapiere" (such as valuable papers existing in non-material, electronic form) are claimed to be incorrect and removed from the current legislation of the Russian Federation. The second approach works on the basis of the differentiation between the Common Law concept of "security" and the Civil Law concept of "valuable paper". Mr. Pentsov's research, presented in an article written in English, uses both methodological tools and involves, firstly, a historical study of the origin and development of certain legal phenomena (securities) as they evolved in different countries, and secondly, a comparative, synchronic study of equivalent legal phenomena as they exist in different countries today. Employing the first method, Mr. Pentsov divided the historical development of the conception of "valuable paper" in Russia into five major stages. He found that, despite the existence of a relatively wide circulation of valuable papers, especially in the second half of the 19th century, Russian legislation before 1917 (the first stage) did not have a unified definition of valuable paper. The term was used, in both theoretical studies and legislation, but it covered a broad range of financial instruments such as stocks, bonds, government bonds, promissory notes, bills of exchange, etc. During the second stage, also, the legislation of the USSR did not have a unified definition of "valuable paper". After the end of the "new economic policy" (1922 - 1930) the stock exchanges and the securities markets in the USSR, with a very few exceptions, were abolished. And thus during the third stage (up to 1985), the use of valuable papers in practice was reduced to foreign economic relations (bills of exchange, stocks in enterprises outside the USSR) and to state bonds. Not surprisingly, there was still no unified definition of "valuable paper". After the beginning of Gorbachev's perestroika, a securities market began to re-appear in the USSR. However, the successful development of securities markets in the USSR was retarded by the absence of an appropriate regulatory framework. The first effort to improve the situation was the adoption of the Regulations on Valuable Papers, approved by resolution No. 590 of the Council of Ministers of the USSR, dated June 19, 1990. Section 1 of the Regulation contained the first statutory definition of "valuable paper" in the history of Russia. At the very beginning of the period of transition to a market economy, a number of acts contained different definitions of "valuable paper". This diversity clearly undermined the stability of the Russian securities market and did not achieve the goal of protecting the investor. The lack of unified criteria for the consideration of such non-standard financial instruments as "valuable papers" significantly contributed to the appearance of numerous fraudulent "pyramid" schemes that were outside of the regulatory scheme of Russia legislation. The situation was substantially improved by the adoption of the new Civil Code of the Russian Federation. According to Section 1 of Article 142 of the Civil Code, a valuable paper is a document that confirms, in compliance with an established form and mandatory requisites, certain material rights whose realisation or transfer are possible only in the process of its presentation. Finally, the recent Federal law No. 39 - FZ "On the Valuable Papers Market", dated April 22 1996, has also introduced the term "emission valuable papers". According to Article 2 of this Law, an "emission valuable paper" is any valuable paper, including non-documentary, that simultaneously has the following features: it fixes the composition of material and non-material rights that are subject to confirmation, cession and unconditional realisation in compliance with the form and procedure established by this federal law; it is placed by issues; and it has equal amount and time of realisation of rights within the same issue regardless of when the valuable paper was purchased. Thus the introduction of the conception of "emission valuable paper" became the starting point in the Russian federation's legislation for the differentiation between the legal regimes of "commercial papers" and "investment papers" similar to the Common Law approach. Moving now to the synchronic, comparative method of research, Mr. Pentsov notes that there are currently three major conceptions of "security" and, correspondingly, three approaches to its legal definition: the Common Law concept, the continental law concept, and the concept employed by Japanese Law. Mr. Pentsov proceeds to analyse the differences and similarities of all three, concluding that though the concept of "security" in the Common Law system substantially differs from that of "valuable paper" in the Continental Law system, nevertheless the two concepts are developing in similar directions. He predicts that in the foreseeable future the existing differences between these two concepts will become less and less significant. On the basis of his research, Mr. Pentsov arrived at the conclusion that the concept of "security" (and its equivalents) is not a static one. On the contrary, it is in the process of permanent evolution that reflects the introduction of new financial instruments onto the capital markets. He believes that the scope of the statutory definition of "security" plays an extremely important role in the protection of investors. While passing the Securities Act of 1933, the United States Congress determined that the best way to achieve the goal of protecting investors was to define the term "security" in sufficiently broad and general terms so as to include within the definition the many types of instruments that in the commercial world fall within the ordinary concept of "security' and to cover the countless and various devices used by those who seek to use the money of others on the promise of profits. On the other hand, the very limited scope of the current definition of "emission valuable paper" in the Federal Law of the Russian Federation entitled "On the Valuable Papers Market" does not allow the anti-fraud provisions of this law to be implemented in an efficient way. Consequently, there is no basis for the protection of investors. Mr. Pentsov proposes amendments which he believes would enable the Russian markets to become more efficient and attractive for both foreign and domestic investors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using multicast communication in Wireless Sensor Networks (WSNs) is an efficient way to disseminate the same data (from one sender) to multiple receivers, e.g., transmitting code updates to a group of sensor nodes. Due to the nature of code update traffic a multicast protocol has to support bulky traffic and end-to-end reliability. We are interested in an energy-efficient multicast protocol due to the limited resources of wireless sensor nodes. Current data dissemination schemes do not fulfill the above requirements. In order to close the gap, we designed and implemented the SNOMC (Sensor Node Overlay Multicast) protocol. It is an overlay multicast protocol, which supports reliable, time-efficient, and energy-efficient data dissemination of bulky data from one sender to many receivers. To ensure end-to-end reliability, SNOMC uses a NACK-based reliability mechanism with different caching strategies.