1000 resultados para Cochin Backwaters
Resumo:
One of the fastest expanding areas of computer exploitation is in embedded systems, whose prime function is not that of computing, but which nevertheless require information processing in order to carry out their prime function. Advances in hardware technology have made multi microprocessor systems a viable alternative to uniprocessor systems in many embedded application areas. This thesis reports the results of investigations carried out on multi microprocessors oriented towards embedded applications, with a view to enhancing throughput and reliability. An ideal controller for multiprocessor operation is developed which would smoothen sharing of routines and enable more powerful and efficient code I data interchange. Results of performance evaluation are appended.A typical application scenario is presented, which calls for classifying tasks based on characteristic features that were identified. The different classes are introduced along with a partitioned storage scheme. Theoretical analysis is also given. A review of schemes available for reducing disc access time is carried out and a new scheme presented. This is found to speed up data base transactions in embedded systems. The significance of software maintenance and adaptation in such applications is highlighted. A novel scheme of prov1d1ng a maintenance folio to system firmware is presented, alongwith experimental results. Processing reliability can be enhanced if facility exists to check if a particular instruction in a stream is appropriate. Likelihood of occurrence of a particular instruction would be more prudent if number of instructions in the set is less. A new organisation is derived to form the basement for further work. Some early results that would help steer the course of the work are presented.
Resumo:
In the present work, we have tried to evaluate systematically the surface properties of sulphated tin oxide systems modified with three different transition metal oxides viz. iron oxide, tungsten oxide and molybdenum oxide. The catalytic activities of these systems are checked and compared by carrying out some industrially important reactions such as oxidative dehydrogenation of ethylbenzene and Friedel-Crafts reactions.
Resumo:
The thesis describes the development and evaluation of epoxy resin as interfacial bonding agent for short Nylon-6 fiber elastomer composites. Epoxy resin is well known for its adhesive property. The potential use of it as interfacial bonding agent in short fiber composite is not explored yet. Three rubbers viz., acrylonitrile butadiene rubber (NBR), Neoprene rubber (CR) and styrene butadiene rubber (SBR) were selected and different fiber loading were tried. The resin concentration was optimized for each fiber loading with respect to cure characteristics and mechanical properties. Rheological characteristics and thermal degradation of the composites containing different fiber loading and different resin concentrations were studied in detail to find the effect of epoxy resin bonding system. The mechanical properties were studied in detail. The short Nylon -6 fiber improved most of the mechanical properties of all the three rubbers. Tensile strength showed a dip at 10 phr fiber loading in the case of CR while it was continuously increased with fiber loading in the case of NBR and SBR. All the composites showed anisotropy in mechanical properties. The epoxy resin is an effective bonding agent for short Nylon -6 fiber reinforced NBR and CR composites. Epoxy resin improved tensile strength, abrasion resistance and modulus of these composites. SEM studies confirmed the improved bonding of fiber and matrix in the presence of epoxy bonding agent. Epoxy resin was not effective as bonding agent in the case of short Nylon fiber- SBR composite. From the rheological studies of the composites with and without bonding agent it was observed that all the composite exhibited pseudoplasticity, which decreased with temperature. At higher shear rates all the mixes showed plug flow. SEM pictures showed that maximum orientation of fibers occured at a shear rate, just before the onset of plug flow. The presence of fiber reduced the temperature sensitivity of the flow at a given shear rate. Die swell was reduced in the presence of fiber. Shear viscosity of the composite was increased in the presence of resin. Die swell was increased in the presence of epoxy resin for composites at all shear rates. The thermal degradation of NBR and SBR composites with and without bonding agent followed single step degradation pattern. Thermal stability of the composites was improved in the presence of bonding agent. The degradation of virgin elastomer and the composites followed first order kinetics.
Resumo:
Department of Polymer Science and Rubber Technology,Cochin University of Science and Technology
Resumo:
Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology
Resumo:
The primary aim of this work has been to develop conductive silicone and nitrile rubbers, which are extensively used for making conductive pads in telephone sets, calculators and other applications. Another objective of the work has been to synthesise and characterize novel conducting polymers based on glyoxal and paraphenylenediamine- poly(p-phenylenediazomethine. Conducting polymer matrices were developed from polymer blends such as poly(pphenylenediazomethine), polyethylene, PVC and silica and their properties were studied.
Resumo:
Vapour phase methylation of phenol is carried out over La2O3 supported vanadia systems of various composition. The structural features and physico chemical characterisation of the catalysts are investigated. Orthovanadates are formed in addition to surface vanadyl species on the metal oxide support. No V2O5 crystallites are detected. The acid base properties of the oxides are studied by Hammett indicator method and decomposition of cyclohexanol.The data are correlated with the catalytic activity and selectivity of the products. Ring alkylation is found to be predominant over these catalysts.
Resumo:
The thesis deals with our studies on the synthesis and elucidation of structure of some metal complexes of dithio ligands, such as the dithiocarbamates, xanthates and 2-aminocyclopent-1-ene-1-dithiocarboxylate and its N-alkyl derivatives.2-Aminocyclopent-1-ene-1-dithiocarboxylate (ACDA) is an interesting ligand, because of its potential dual capability of bonding between the metal and the ligand. Since the earlier reports on the complexes of ACDA contain contradictory ideas on the nature of its bonding, it was thought worthwhile to undertake a detailed and systematic study of these type of complexes. As the ACDA complexes have very low solubilities in solvents like chloroform, we have used the isopropyl derivative of ACDA as the ligand. The increased solubility of these complexes have made it possible to investigate their NMR and solution electronic spectra.The complexes of this ligand have not yet been reported in the literature.We have synthesised some new mixed ligand complexes of dithiocarbamates by reacting bis(dithiocarbamato)-µ-dichloro dicopper complexes (obtained by the reaction of mixed benzoic dithiocarbamic anhydride and copper(II) chloride) with ACDA or its N-alkyl derivatives.Interactions of metal halides with the mixed anhydrides formed from benzoylchloride and xanthates have also been investigated. Novel complexes of the type, [Cu2(RXant)CI] (R=i-Bu, i-Pr, n-Bu or n-Pr)) have been isolated from the reaction of copper(II) chloride and the mixed anhydride, and these reactions appear to be like the clock reactions reported in the literature.It also deal with the characterisation of the complexes of the type [Hg(R2d t c )X] (X=Cl, Br or 1),[Cu3(R2dtc)6][Cu2Br6] and [Cu(R2dtc)Cl2](R2=Me2,Et2,Pip,Morph or Pyrr)respectively, synthesised by simple and novel routes, different from those reported earlier.
Resumo:
The current research investigates the possibility of using single walled carbon nanotubes (SWNTs) as filler in polymers to impart several properties to the matrix polymer. SWNTs in a polymer matrix like poly(ethylene terephthalate) induce nucleation in its melt crystallization, provide effective reinforcement and impart electrical conductivity. We adopt a simple melt compounding technique for incorporating the nanotubes into the polymer matrix. For attaining a better dispersion of the filler, an ultrasound assisted dissolution-evaporation method has also been tried. The resulting enhancement in the materials properties indicates an improved disentanglement of the nanotube ropes, which in turn provides effective matrix-filler interaction. PET-SWNT nanocomposite fibers prepared through melt spinning followed by subsequent drawing are also found to have significantly higher mechanical propertiesas compared to pristine PET fiber.SWNTs also find applications in composites based on elastomers such as natural rubber as they can impart electrical conductivity with simultaneous improvement in the mechanical properties.
Resumo:
The study shows that standard plastics like polypropylene and high density polyethylene can be reinforced by adding nylon short fibres. Compared to the conventional glass reinforced thermoplastics this novel class of reinforced thermoplastics has the major advantage of recyclability. Hence such composites represent a new spectrum of recyclable polymer composites. The fibre length and fibre diameter used for reinforcement are critical parameters While there is a critical fibre length below which no effective reinforcement takes place, the reinforcement improves when the fibre diameter decreases due to increased surface area.While the fibres alone give moderate reinforcement, chemical modification of the matrix can further improve the strength and modulus of the composites. Maleic anhydride grafting in presence of styrene was found to be the most efficient chemical modification. While the fibre addition enhances the viscosity of the melt at lower shear rates, the enhancement at higher shear rate is only marginal. This shows that processing of the composite can be done in a similar way to that of the matrix polymer in high shear operations such as injection moulding. Another significant observation is the decrease in melt viscosity of the composite upon grafting. Thus chemical modification of matrix makes processing of the composite easier in addition to improving the mechanical load bearing capacity.For the development of a useful short fibre composite, selection of proper materials, optimum design with regard to the particular product and choosing proper processing parameters are most essential. Since there is a co-influence of many parameters, analytical solutions are difficult. Hence for selecting proper processing parameters 'rnold flow' software was utilized. The orientation of the fibres, mechanical properties, temperature profile, shrinkage, fill time etc. were determined using the software.Another interesting feature of the nylon fibre/PP and nylon fibre/HDPE composites is their thermal behaviour. Both nylon and PP degrade at the same temperature in single steps and hence the thermal degradation behaviour of the composites is also being predictable. It is observed that the thermal behaviour of the matrix or reinforcement does not affect each other. Almost similar behaviour is observed in the case of nylon fibre/HDPE composites. Another equally significant factor is the nucleating effect of nylon fibre when the composite melt cools down. In the presence of the fibre the onset of crystallization occurs at slightly higher temperature.When the matrix is modified by grafting, the onset of crystallization occurs at still higher temperature. Hence it may be calculated that one reason for the improvement in mechanical behaviour of the composite is the difference in crystallization behaviour of the matrix in presence of the fibre.As mentioned earlier, a major advantage of these composites is their recyclability. Two basic approaches may be employed for recycling namely, low temperature recycling and high temperature recycling. In the low temperature recycling, the recycling is done at a temperature above the melting point of the matrix, but below that of the fibres while in the high temperature route. the recycling is done at a temperature above the melting points of both matrix and fibre. The former is particularly interesting in that the recycled material has equal or even better mechanical properties compared to the initial product. This is possible because the orientation of the fibre can improve with successive recycling. Hence such recycled composites can be used for the same applications for which the original composite was developed. In high temperature recycling, the composite is converted into a blend and hence the properties will be inferior to that of the original composite, but will be higher than that of the matrix material alone.
Resumo:
Discovery of coherent optical sources four decades ago has revolutionized all fields of scientific development. One of the path breaking applications of lasers is the emergence of various thermo optic techniques to unravel some of the mysteries of light matter interactions.Thermo optic technique is a valuable tool to evaluate optical and thermal properties of materials in solid,liquid and gaseous states .This technique can also be employed effectively in nondestructive quality evaluation. In this doctoral thesis , the use of photothermal techniques based on photoacoustic and photothermal deflection phenomena for the study of certain class of photonics materials such as semiconductors, nano metal dispersed ceramics, composites of conducting polymers and liquid crystals is elaborated.
Resumo:
The thesis deals with the preparation and dielectric characterization of Poly aniline and its analogues in ISM band frequency of 2-4 GHz that includes part of the microwave region (300 MHz to 300 GHz) of the electromagnetic spectrum and an initial dielectric study in the high frequency [O.05MHz-13 MHz]. PolyaniIine has been synthesized by an in situ doping reaction under different temperature and in the presence of inorganic dopants such as HCl H2S04, HN03, HCl04 and organic dopants such as camphorsulphonic acid [CSA], toluenesulphonic acid {TSA) and naphthalenesulphonic acid [NSA]. The variation in dielectric properties with change in reaction temperature, dopants and frequency has been studied. The effect of codopants and microemulsions on the dielectric properties has also been studied in the ISM band. The ISM band of frequencies (2-4 GHz) is of great utility in Industrial, Scientific and Medical (ISM) applications. Microwave heating is a very efficient method of heating dielectric materials and is extensively used in industrial as well as household heating applications.
Resumo:
The liquid-phase Friedel-Crafts acylation of toluene using benzoyl chloride as benzoylating agent has heen carried out over Nix, Mn(l-x)Fe2 O4 (x=O, 0.2, 0.4, 0.6, 0.8 and 1.0) type systems under different reaction conditions. It is observed that the systems with high 'x' values are effective for the conversion of BOC and the selective formation of 4-MBP. Selectivity for 4-MBP over MnFe2O4 is more than 90% under the optimized reaction conditions. Sites of moderate acidity is effective in calalyzing the benzoylation reaction.
Resumo:
A series of supported vanadia systems have been prepared by excess solvent technique using La203 and DY203 as supports. Physical characterization has been carried out using XRD, FTIR, TG studies, BET surface area measurement, pore volume analysis etc. Cyclohexanol decomposition has been used as a test reaction for evaluating the acid base properties of the supported system. The oxidative dehydrogenation of ethylbenzene has been employed as a chemical probe reaction to examine the catalytic activity. The active species correspond to amorphous and crystalline tetrahedral vanadyl units in the supported system.
Resumo:
Sm2O3 - vanadia catalysts have been prepared by wet impregnation method using NH4VO3 solution. The surface properties of the prepared catalysts have been studied using FTIR. XRD. surface area and pore volume data. The acid-base properties of the system have been investigated by titrimetric method using Hammett indicators. adsorption of electron acceptors as well as decomposition of cyclohexanol. Phenol alkylation reaction by methanol has been carried out to investigate the catalytic activity. It has been observed that the selectivity of the products depends upon the composition of the supported system