983 resultados para Climate change, political philosophy, neutrality, harm principle, responsibility, technocracy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mass loss by glaciers has been an important contributor to sea level rise in the past, and is projected to contribute a substantial fraction of total sea level rise during the 21st century. Here, we use a model of the world's glaciers to quantify equilibrium sensitivities of global glacier mass to climate change, and to investigate the role of changes in glacier hypsometry for long-term mass changes. We find that 21st century glacier-mass loss is largely governed by the glacier's response to 20th century climate change. This limits the influence of 21st century climate change on glacier-mass loss, and explains why there are relatively small differences in glacier-mass loss under greatly different scenarios of climate change. The projected future changes in both temperature and precipitation experienced by glaciers are amplified relative to the global average. The projected increase in precipitation partly compensates for the mass loss caused by warming, but this compensation is negligible at higher temperature anomalies since an increasing fraction of precipitation at the glacier sites is liquid. Loss of low-lying glacier area, and more importantly, eventual complete disappearance of glaciers, strongly limit the projected sea level contribution from glaciers in coming centuries. The adjustment of glacier hypsometry to changes in the forcing strongly reduces the rates of global glacier-mass loss caused by changes in global mean temperature compared to rates of mass loss when hypsometric changes are neglected. This result is a second reason for the relatively weak dependence of glacier-mass loss on future climate scenario, and helps explain why glacier-mass loss in the first half of the 20th century was of the same order of magnitude as in the second half of the 20th century, even though the rate of warming was considerably smaller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traditional forcing-feedback framework has provided an indispensable basis for discussing global climate changes. However, as analysis of model behavior has become more detailed, shortcomings and ambiguities in the framework have become more evident and physical effects unaccounted for by the traditional framework have become interesting. In particular, the new concept of adjustments, which are responses to forcings that are not mediated by the global mean temperature, has emerged. This concept, related to the older ones of climate efficacy and stratospheric adjustment, is a more physical way of capturing unique responses to specific forcings. We present a pedagogical review of the adjustment concept, why it is important, and how it can be used. The concept is particularly useful for aerosols, where it helps to organize what has become a complex array of forcing mechanisms. It also helps clarify issues around cloud and hydrological response, transient vs. equilibrium climate change, and geoengineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall global-scale consequences of climate change are dependent on the distribution of impacts across regions, and there are multiple dimensions to these impacts.This paper presents a global assessment of the potential impacts of climate change across several sectors, using a harmonised set of impacts models forced by the same climate and socio-economic scenarios. Indicators of impact cover the water resources, river and coastal flooding, agriculture, natural environment and built environment sectors. Impacts are assessed under four SRES socio-economic and emissions scenarios, and the effects of uncertainty in the projected pattern of climate change are incorporated by constructing climate scenarios from 21 global climate models. There is considerable uncertainty in projected regional impacts across the climate model scenarios, and coherent assessments of impacts across sectors and regions therefore must be based on each model pattern separately; using ensemble means, for example, reduces variability between sectors and indicators. An example narrative assessment is presented in the paper. Under this narrative approximately 1 billion people would be exposed to increased water resources stress, around 450 million people exposed to increased river flooding, and 1.3 million extra people would be flooded in coastal floods each year. Crop productivity would fall in most regions, and residential energy demands would be reduced in most regions because reduced heating demands would offset higher cooling demands. Most of the global impacts on water stress and flooding would be in Asia, but the proportional impacts in the Middle East North Africa region would be larger. By 2050 there are emerging differences in impact between different emissions and socio-economic scenarios even though the changes in temperature and sea level are similar, and these differences are greater in 2080. However, for all the indicators, the range in projected impacts between different climate models is considerably greater than the range between emissions and socio-economic scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conceptualizing climate as a distinct variable limits our understanding of the synergies and interactions between climate change and the range of abiotic and biotic factors, which influence animal health. Frameworks such as eco-epidemiology and the epi-systems approach, while more holistic, view climate and climate change as one of many discreet drivers of disease. Here, I argue for a new paradigmatic framework: climate-change syndemics. Climate-change syndemics begins from the assumption that climate change is one of many potential influences on infectious disease processes, but crucially is unlikely to act independently or in isolation; and as such, it is the inter-relationship between factors that take primacy in explorations of infectious disease and climate change. Equally importantly, as climate change will impact a wide range of diseases, the frame of analysis is at the collective rather than individual level (for both human and animal infectious disease) across populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assess how effectively the current network of protected areas (PAs) across the Iberian Peninsula will conserve plant diversity under near-future (2020) climate change. We computed 3267 MAXENT environmental niche models (ENMs) at 1-km spatial resolution for known Iberian plant species under two climate scenarios (1950-2000 baseline & 2020). To predict near-future species distributions across the network of Iberian and Balearics PAs, we combined projections of species’ ENMs with simulations of propagule dispersal by using six scenarios of annual dispersal rates (no dispersal, 0.1 km, 0.5 km, 1 km, 2 km and unlimited). Mined PA grid cell values for each species were then analyzed. We forecast 3% overall floristic diversity richness loss by 2020. The habitat of regionally extant species will contract on average by 13.14%. Niche movement exceeds 1 km per annum for 30% of extant species. While the southerly range margin of northern plant species retracts northward at 8.9 km per decade, overall niche movement is more easterly and westerly than northerly. There is little expansion of the northern range margin of southern plant species even under unlimited dispersal. Regardless of propagule dispersal rate, altitudinal niche movement of +25 m per decade is strongest for northern species. Pyrenees flora is most vulnerable to near-future climate change with many northern plant species responding by shifting their range westerly and easterly rather than northerly. Northern humid habitats will be particularly vulnerable to near-future climate change. Andalusian National Parks will become important southern biodiversity refuges. With limited human intervention (particularly in the Pyrenees), we conclude that floristic diversity in Iberian PAs should withstand near-future climate change.