993 resultados para Cheese whey proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human contains 49 ATP-binding cassette (ABC) transporter genes and the multidrug resistance associated proteins (MRP1/ABCC1, MRP2/ABCC2, MRP3/ABCC3, MRP4/ABCC4, MRP5/ABCC5, MRP6/ABCC6, MRP7/ABCC10, MRP8/ABCC11 and MRP9/ABCC12) belong to the ABCC family which contains 13 members. ABCC7 is cystic fibrosis transmembrane conductance regulator; ABCC8 and ABCC9 are the sulfonylurea receptors which constitute the ATP-sensing subunits of a complex potassium channel. MRP10/ABCC13 is clearly a pseudo-gene which encodes a truncated protein that is highly expressed in fetal human liver with the highest similarity to MRP2/ABCC2 but without transporting activity. These transporters are localized to the apical and/or basolateral membrane of the hepatocytes, enterocytes, renal proximal tubule cells and endothelial cells of the blood-brain barrier. MRP/ABCC members transport a structurally diverse array of important endogenous substances and xenobiotics and their metabolites (in particular conjugates) with different substrate specificity and transport kinetics. The human MRP/ABCC transporters except MRP9/ABCC12 are all able to transport organic anions, such as drugs conjugated to glutathione, sulphate or glucuronate. In addition, selected MRP/ABCC members may transport a variety of endogenous compounds, such as leukotriene C(4) (LTC(4) by MRP1/ABCC1), bilirubin glucuronides (MRP2/ABCC2, and MRP3/ABCC3), prostaglandins E1 and E2 (MRP4/ABCC4), cGMP (MRP4/ABCC4, MRP5/ABCC5, and MRP8/ABCC11), and several glucuronosyl-, or sulfatidyl steroids. In vitro, the MRP/ABCC transporters can collectively confer resistance to natural product anticancer drugs and their conjugated metabolites, platinum compounds, folate antimetabolites, nucleoside and nucleotide analogs, arsenical and antimonial oxyanions, peptide-based agents, and in concert with alterations in phase II conjugating or biosynthetic enzymes, classical alkylating agents, alkylating agents. Several MRP/ABCC members (MRPs 1-3) are associated with tumor resistance which is often caused by an increased efflux and decreased intracellular accumulation of natural product anticancer drugs and other anticancer agents. Drug targeting of these transporters to overcome MRP/ABCC-mediated multidrug resistance may play a role in cancer chemotherapy. Most MRP/ABCC transporters are subject to inhibition by a variety of compounds. Based on currently available preclinical and limited clinical data, it can be expected that modulation of MRP members may represent a useful approach in the management of anticancer and antimicrobial drug resistance and possibly of inflammatory diseases and other diseases. A better understanding of their substrates and inhibitors has important implications in development of drugs for treatment of cancer and inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a system that employs random forests to formulate a method for subcellular localisation of proteins. A random forest is an ensemble learner that grows classification trees. Each tree produces a classification decision, and an integrated output is calculated. The system classifies the protein-localisation patterns within fluorescent microscope images. 2D images of HeLa cells that include all major classes of subcellular structures, and the associated feature set are used. The performance of the developed system is compared against that of the support vector machine and decision tree approaches. Three experiments are performed to study the influence of the training and test set size on the performance of the examined methods. The calculated classification errors and execution times are presented and discussed. The lowest classification error (2.9%) has been produced by the developed system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular lipids frequently co-purify with lipid binding proteins isolated from tissue extracts or heterologous host systems and as such hinder in vitro ligand binding approaches for which the apo-protein is a prerequisite. Here we present a technique for the complete removal of unesterified fatty acids, phospholipids, steroids and other lipophilic ligands bound to soluble proteins, without protein denaturation. Peroxisome proliferator activated receptor gamma ligand binding domain and intracellular fatty acid binding proteins were expressed in an Escherichia coli host and completely delipidated by hydrophobic interaction chromatography using phenyl sepharose. The delipidation procedure operates at room temperature with complete removal of bound lipids in a single step, as ascertained by mass spectrometry analysis of organic solvent extracts from purified protein samples. The speed and capacity of this method makes it amenable to scale-up and high-throughput applications. The method can also easily be adapted for other lipid binding proteins that require delipidation under native conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two leukaemia inhibitory factor (LIF) mutants, designated MH35-BD and LIF05, have been shown to have a capacity to inhibit the biological activities of not only human LIF (hLIF) but also other interleukin-6 (IL-6) subfamily cytokines such as human oncostatin M (hOSM). These cytokines share the same receptor complex in which the glycoprotein 130 (gp130) subunit is a common constituent. However, at low concentrations and in their monomeric forms, such molecules have a relatively short plasma half-life due to rapid clearance from the kidneys. Here, to prolong their serum half-lives, we have used a multi-step polymerase chain reaction (PCR) to fuse each of the LIF05 and MH35-BD cDNA fragments to a sequence encoding the Fc portion, and the hinge region, of the human immunoglobulin G (hIgG) heavy chain. The linking was achieved through an oligomer encoding a thrombin-sensitive peptide linker thus generating MH35-BD:Fc and LIF05:Fc, respectively. Both Fc fusion constructs were expressed in insect cell Sf21 and the proteins were purified by two successive affinity chromatography steps using nickel–nitrilotriacetic acid (Ni–NTA) agarose and protein A beads. The Ba/F3 cell-based proliferation assay was used to confirm that the proteins were biologically active. In addition, preliminary pharmacokinetics indicates that the Fc fusion constructs have a longer serum half-life compared to their non-fusion counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of material properties on complex coacervation of whey protein and gum Arabic from various sources was investigated. In this study, it was demonstrated that material properties of whey protein isolates and gum Arabic affect the complex coacervation process significantly. For whey protein, the coacervation capability could be correlated with their level of denaturation and calcium content. For gum Arabic, both material sources and salt content were found to be attributing factors to their coacervation capability. This study facilitated the development of Omega-3 lipids microcapsules with promising performances in certain food applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review describes the nature and applications of ribosome inactivating proteins (RIPs) from Momordica charantia (bitter melon). RIPs from the plant kingdom have received much attention in biomedical research because they target conserved host protein synthesis machinery and show specificity towards human and animal cell targets. Recent studies aimed at unravelling the enzymatic activities of the M charantia RIPs provide a structural basis for their activities. It has been reported that RIPs are member of the single chain ribosome inactivating protein (SCRIP) family which act irreversibly on ribosome by removing adenine residue from eukaryotic ribosomal RNA. Various activities of RIPs include anti-tumor, broad anti-viral, ribonuclease and deoxyribonuclease. MAP30 (Momordica Anti-HIV Protein), alpha- and beta-momorcharins inhibit HIV replication in acutely and chronically infected cells and thus are considered potential therapeutic agent in HIV infection and AIDS. Further, MAP30 improved the efficacy of anti-HIV therapy when used in combination with other anti-viral drugs. MAP30 holds therapeutic promise over other RIPs because not only it is active against infection and replication of both HSV and HIV but is non toxic to normal cells. Here we review the nature, action, structure function relationship and applications of RIPs from Momordica charantia and evaluate their potential for anti-cancer and anti-viral therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Skeletal muscle produces a variety of secreted proteins that have important roles in intercellular communication and affects processes such as glucose homoeostasis. The objective of this study was to develop a novel Signal Sequence Trap (SST) in conjunction with cDNA microarray technology to identify proteins secreted from skeletal muscle of Psammomys obesus that were associated with obesity and type 2 diabetes (T2D).

Design: Secreted proteins that were differentially expressed between lean, normal glucose tolerant (NGT), overweight and impaired glucose tolerant (IGT) and obese, T2D P. obesus were isolated using SST in conjunction with cDNA microarray technology. Subsequent gene expression was measured in tissues from P. obesus by real-time PCR (RT-PCR).

Results: The SST yielded 1600 positive clones, which were screened for differential expression. A total of 91 (B6%) clones were identified by microarray to be differentially expressed between NGT, IGT and T2D P. obesus. These clones were sequenced to identify 51 genes, of which only 27 were previously known to encode secreted proteins. Three candidate genes not previously associated with obesity or type 2 diabetes, sushi domain containing 2, collagen and calcium-binding EGF domains 1 and periostin (Postn), as well as one gene known to be associated, complement component 1, were shown by RT-PCR to be differentially expressed in  skeletal muscle of P. obesus. Further characterization of the secreted protein Postn revealed it to be predominantly expressed in adipose tissue, with higher expression in visceral compared with subcutaneous adipose depots.

Conclusion: SST in conjunction with cDNA microarray technology is a powerful tool to identify differentially expressed secreted proteins involved in complex diseases such as obesity and type 2 diabetes. Furthermore, a number of candidate genes were identified, in particular, Postn, which may have a role in the development of obesity and type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterotrimeric G proteins are involved in the defense response against necrotrophic fungi in Arabidopsis. In order to elucidate the resistance mechanisms involving heterotrimeric G proteins, we analyzed the effects of the Gβ (subunit deficiency in the mutant agb1-2 on pathogenesis-related gene expression, as well as the genetic interaction between agb1-2 and a number of mutants of established defense pathways. Gβ-mediated signaling suppresses the induction of salicylic acid (SA)-, jasmonic acid (JA)-, ethylene (ET)- and abscisic acid (ABA)-dependent genes during the initial phase of the infection with Fusarium oxysporum (up to 48 h after inoculation). However, at a later phase it enhances JA/ET-dependent genes such as PDF1.2 and PR4. Quantification of the Fusarium wilt symptoms revealed that Gβ- and SA-deficient mutants were more susceptible than wild-type plants, whereas JA- and ET-insensitive and ABA-deficient mutants demonstrated various levels of resistance. Analysis of the double mutants showed that the Gβ-mediated resistance to F. oxysporum and Alternaria brassicicola was mostly independent of all of the previously mentioned pathways. However, the progressive decay of agb1-2 mutants was compensated by coi1-21 and jin1-9 mutations, suggesting that at this stage of F. oxysporum infection Gβ acts upstream of COI1 and ATMYC2 in JA signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterotrimeric G proteinshave been previously linked to plant defense; however a role for the Gbg dimer in defense signaling has not been described to date. Using available Arabidopsis (Arabidopsis thaliana) mutants lacking functional Ga or Gb subunits, we show that defense against the necrotrophic pathogens Alternaria brassicicola and Fusarium oxysporum is impaired in Gb-deficient mutants while Ga-deficient mutants show slightly increased resistance compared to wild-type Columbia ecotype plants. In contrast, responses to virulent (DC3000) and avirulent (JL1065) strains of Pseudomonas syringae appear to be independent of heterotrimeric G proteins. The induction of a number of defense-related genes in Gb-deficient mutants were severely reduced in response to A. brassicicola infection. In addition, Gb-deficient mutants exhibit decreased sensitivity to a number of methyl jasmonate-induced responses such as induction of the plant defensin gene PDF1.2, inhibition of root elongation, seed germination, and growth of plants in sublethal concentrations of methyl jasmonate. In all cases, the behavior of the Ga-deficient mutants is coherent with the classic heterotrimeric mechanism of action, indicating that jasmonic acid signaling is influenced by the Gbg functional subunit but not by Ga. We hypothesize that Gbg acts as a direct or indirect enhancer of the jasmonate signaling pathway in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reabsorption of filtered urea by the kidney is essential for retaining high levels of urea in marine cartilaginous fish. Our previous studies on the shark facilitative urea transporter (UT) suggest that additional UT(s) comprising the urea reabsorption system could exist in the cartilaginous fish kidney. Here, we isolated three cDNAs encoding UTs from the kidney of elephant fish, Callorhinchus milii, and termed them efUT-1, efUT-2 and efUT-3. efUT-1 is orthologous to known elasmobranch UTs, while efUT-2 and efUT-3 are novel UTs in cartilaginous fish. Two variants were found for efUT-1 and efUT-2, in which the NH2-terminal intracellular domain was distinct between the variants. Differences in potential phosphorylation sites were found in the variant-specific NH2-terminal domains. When expressed in Xenopus oocytes, all five UT transcripts including the efUT-1 and efUT-2 variants induced more than a 10-fold increase in [14C] urea uptake. Phloretin inhibited dose-dependently the increase of urea uptake, suggesting that the identified UTs are facilitative UTs. Molecular phylogenetic analysis revealed that efUT-1 and efUT-2 had diverged in the cartilaginous fish lineage, while efUT-3 is distinct from efUT-1 and efUT-2. The present finding of multiple UTs in elephant fish provides a key to understanding the molecular mechanisms of urea reabsorption system in the cartilaginous fish kidney.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactobacillus plantarum and subspecies of Lactobacillus casei were isolated from good quality mature Cheddar cheese and characterized with respect to metabolic functions that would allow their use in cheesemaking. In this way microbiological control of the maturation process with particular emphasis on protein catabolism was achieved. The lactobacilli isolated were selected for low growth rates (and acid production) in milk, and low proteinase activity to allow for their addition in high numbers to cheesemilk together with the normal starter flora (group N streptococci). The growth and acid production of the starter bacteria were unaffected by the presence of the lactobacilli during cheese manufacture and it was found that the added lactobacilli were able to grow and function under the conditions prevalent in Cheddar cheese during maturation. It was also demonstrated that the lactobacilli could be grown in an artificial medium to high numbers under controlled conditions and could be harvested for the preparation of cell concentrates, a necessary characteristic for commercialization. The lactobacilli also metabolized citrate, a potential problem in cheese maturation associated with C02 production but this did not adversely affect the maturation process under the conditions used. Compared to the group N streptococci the non-starter lactobacilli possessed a proteinase system that had a higher temperature optimum and was less affected by heat and sodium chloride. They also possessed a more active peptidase system although both the lactobacilli and the starter organisms possessed a similar range of peptidases. Non-starter lactobacilli were added to normal cheese and cheese made with proteinase negative starter. The added organisms did not adversely affect manufacturing parameters and did not metabolize citrate or lead to the formation of biogenic amines. However protein catabolism rates, particularly with respect to peptide degradation, were increased, as was flavour development and intensity. It was observed that the body and texture of the cheeses was unaffected by the treatment. By controlling both the starter and non-starter microflora in the cheeses a practical system for favourably influencing cheese maturation was possible. The investigation has demonstrated that carefully selected and characterized non-starter lactobacilli can be incorporated into Cheddar cheese manufacture in order to influence flavour development during maturation. Moreover the organisms can be added to the vat stage of manufacture without causing problems to the manufacturing process. This approach is a simple cost effective means of improving the cost of Cheddar cheese production and provides an unique opportunity to improve and control quality of all Cheddar cheese produced.