993 resultados para Cellular dysplasia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adeno-associated virus 2 (AAV), a single-stranded DNA-containing, nonpathogenic human parvovirus, has gained attention as a potentially useful vector for human gene therapy. However, the single-stranded nature of the viral genome significantly impacts upon the transduction efficiency, because the second-strand viral DNA synthesis is the rate-limiting step. We hypothesized that a host-cell protein interacts with the single-stranded D sequence within the inverted terminal repeat structure of the AAV genome and prevents the viral second-strand DNA synthesis. Indeed, a cellular protein has been identified that interacts specifically and preferentially with the D sequence at the 3′ end of the AAV genome. This protein, designated the single-stranded D-sequence-binding protein (ssD-BP), is phosphorylated at tyrosine residues and blocks AAV-mediated transgene expression in infected cells by inhibiting the leading strand viral DNA synthesis. Inhibition of cellular protein tyrosine kinases by genistein results in dephosphorylation of the ssD-BP, leading not only to significant augmentation of transgene expression from recombinant AAV but also to autonomous replication of the wild-type AAV genome. Dephosphorylation of the ssD-BP also correlates with adenovirus infection, or expression of the adenovirus E4orf6 protein, which is known to induce AAV DNA replication and gene expression. Thus, phosphorylation state of the ssD-BP appears to play a crucial role in the life cycle of AAV and may prove to be an important determinant in the successful use of AAV-based vectors in human gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four unrelated patients are described with a syndrome that included developmental delay, seizures, ataxia, recurrent infections, severe language deficit, and an unusual behavioral phenotype characterized by hyperactivity, short attention span, and poor social interaction. These manifestations appeared within the first few years of life. Each patient displayed abnormalities on EEG. No unusual metabolites were found in plasma or urine, and metabolic testing was normal except for persistent hypouricosuria. Investigation of purine and pyrimidine metabolism in cultured fibroblasts derived from these patients showed normal incorporation of purine bases into nucleotides but decreased incorporation of uridine. De novo synthesis of purines and cellular phosphoribosyl pyrophosphate content also were moderately decreased. The distribution of incorporated purines and pyrimidines did not reveal a pattern suggestive of a deficient enzyme activity. Assay of individual enzymes in fibroblast lysates showed no deficiencies. However, the activity of cytosolic 5′-nucleotidase was elevated 6- to 10-fold. Based on the possibility that the observed increased catabolic activity and decreased pyrimidine salvage might be causing a deficiency of pyrimidine nucleotides, the patients were treated with oral pyrimidine nucleoside or nucleotide compounds. All patients showed remarkable improvement in speech and behavior as well as decreased seizure activity and frequency of infections. A double-blind placebo trial was undertaken to ascertain the efficacy of this supplementation regimen. Upon replacement of the supplements with placebo, all patients showed rapid regression to their pretreatment states. These observations suggest that increased nucleotide catabolism is related to the symptoms of these patients, and that the effects of this increased catabolism are reversed by administration of uridine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic studies in chickens and receptor interference experiments have indicated that avian leukosis virus (ALV)-E may utilize a cellular receptor related to the receptor for ALV-B and ALV-D. Recently, we cloned CAR1, a tumor necrosis factor receptor (TNFR)-related protein, that serves as a cellular receptor for ALV-B and ALV-D. To determine whether the cellular receptor for ALV-E is a CAR1-like protein, a cDNA library was made from turkey embryo fibroblasts (TEFs), which are susceptible to ALV-E infection, but not to infection by ALV-B and ALV-D. The cDNA library was screened with a radioactively labeled CAR1 cDNA probe, and clones that hybridized with the probe were isolated. A 2.3-kb cDNA clone was identified that conferred susceptibility to ALV-E infection, but not to ALV-B infection, when expressed in transfected human 293 cells. The functional cDNA clone is predicted to encode a 368 amino acid protein with significant amino acid similarity to CAR1. Like CAR1, the TEF protein is predicted to have two extracellular TNFR-like cysteine-rich domains and a putative death domain similar to those of TNFR I and Fas. Flow cytometric analysis and immunoprecipitation experiments demonstrated specific binding between the TEF CAR1-related protein and an immunoadhesin composed of the surface (SU) envelope protein of subgroup E (RAV-0) virus fused to the constant region of a rabbit immunoglobulin. These two activities of the TEF CAR1-related protein, specific binding to ALV-E SU and permitting entry only of ALV-E, have unambiguously identified this protein as a cellular receptor specific for subgroup E ALV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Werner syndrome (WS) is an autosomal recessive disorder characterized by genomic instability and the premature onset of a number of age-related diseases. The gene responsible for WS encodes a member of the RecQ-like subfamily of DNA helicases. Here we show that its murine homologue maps to murine chromosome 8 in a region syntenic with the human WRN gene. We have deleted a segment of this gene and created Wrn-deficient embryonic stem (ES) cells and WS mice. While displaying reduced embryonic survival, live-born WS mice otherwise appear normal during their first year of life. Nonetheless, although several DNA repair systems are apparently intact in homozygous WS ES cells, such cells display a higher mutation rate and are significantly more sensitive to topoisomerase inhibitors (especially camptothecin) than are wild-type ES cells. Furthermore, mouse embryo fibroblasts derived from homozygous WS embryos show premature loss of proliferative capacity. At the molecular level, wild-type, but not mutant, WS protein copurifies through a series of centrifugation and chromatography steps with a multiprotein DNA replication complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p300 and CBP are homologous transcription adapters targeted by the E1A oncoprotein. They participate in numerous biological processes, including cell cycle arrest, differentiation, and transcription activation. p300 and/or CBP (p300/CBP) also coactivate CREB. How they participate in these processes is not yet known. In a search for specific p300 binding proteins, we have cloned the intact cDNA for HIF-1α. This transcription factor mediates hypoxic induction of genes encoding certain glycolytic enzymes, erythropoietin (Epo), and vascular endothelial growth factor. Hypoxic conditions lead to the formation of a DNA binding complex containing both HIF-1α and p300/CBP. Hypoxia-induced transcription from the Epo promoter was specifically enhanced by ectopic p300 and inhibited by E1A binding to p300/CBP. Hypoxia-induced VEGF and Epo mRNA synthesis were similarly inhibited by E1A. Hence, p300/CBP–HIF complexes participate in the induction of hypoxia-responsive genes, including one (vascular endothelial growth factor) that plays a major role in tumor angiogenesis. Paradoxically, these data, to our knowledge for the first time, suggest that p300/CBP are active in both transformation suppression and tumor development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanistic insights to viral replication and pathogenesis generally have come from the analysis of viral gene products, either by studying their biochemical activities and interactions individually or by creating mutant viruses and analyzing their phenotype. Now it is possible to identify and catalog the host cell genes whose mRNA levels change in response to a pathogen. We have used DNA array technology to monitor the level of ≈6,600 human mRNAs in uninfected as compared with human cytomegalovirus-infected cells. The level of 258 mRNAs changed by a factor of 4 or more before the onset of viral DNA replication. Several of these mRNAs encode gene products that might play key roles in virus-induced pathogenesis, identifying them as intriguing targets for further study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helicobacter pylori, present in half of the world’s population, is a very successful pathogen. It can survive for decades in the human stomach with few obvious consequences to the host. However, it is also the cause of gastric diseases ranging from gastritis to ulcers to gastric cancer and has been classified a type 1 carcinogen by the World Health Organization. We have previously shown that phosphorylation of a 145-kDa protein and activation of signal transduction pathways are associated with the attachment of H. pylori to gastric cells. Here we identify the 145-kDa protein as the H. pylori CagA protein. We also show that CagA is necessary to induce a growth-factor-like phenotype (hummingbird) in host gastric cells similar to that induced by hepatocyte growth factor (HGF). Additionally, we identify a second cellular phenotype induced after attachment by H. pylori, which we call SFA (stress fiber associated). SFA is CagA independent and is produced by type I and type II H. pylori.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immortalization of human cells is a critical step during tumorigenesis. In vitro, normal human somatic cells must overcome two proliferative blockades, senescence and crisis, to become immortal. Transformation with viral oncogenes extends the life span of human cells beyond senescence. Such transformed cells eventually succumb to crisis, a period of widespread cellular death that has been proposed to be the result of telomeric shortening. We now show that ectopic expression of the telomerase catalytic subunit (human telomerase reverse transcriptase or hTERT) and subsequent activation of telomerase can allow postsenescent cells to proliferate beyond crisis, the last known proliferative blockade to cellular immortality. Moreover, we demonstrate that alteration of the carboxyl terminus of human telomerase reverse transcriptase does not affect telomerase enzymatic activity but impedes the ability of this enzyme to maintain telomeres. Telomerase-positive cells expressing this mutant enzyme fail to undergo immortalization, further tightening the connection between telomere maintenance and immortalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an effort to identify nuclear receptors important in retinal disease, we screened a retina cDNA library for nuclear receptors. Here we describe the identification of a retina-specific nuclear receptor (RNR) from both human and mouse. Human RNR is a splice variant of the recently published photoreceptor cell-specific nuclear receptor [Kobayashi, M., Takezawa, S., Hara, K., Yu, R. T., Umesono, Y., Agata, K., Taniwaki, M., Yasuda, K. & Umesono, K. (1999) Proc. Natl. Acad. Sci. USA 96, 4814–4819] whereas the mouse RNR is a mouse ortholog. Northern blot and reverse transcription–PCR analyses of human mRNA samples demonstrate that RNR is expressed exclusively in the retina, with transcripts of ≈7.5 kb, ≈3.0 kb, and ≈2.3 kb by Northern blot analysis. In situ hybridization with multiple probes on both primate and mouse eye sections demonstrates that RNR is expressed in the retinal pigment epithelium and in Müller glial cells. By using the Gal4 chimeric receptor/reporter cotransfection system, the ligand binding domain of RNR was found to repress transcriptional activity in the absence of exogenous ligand. Gel mobility shift assays revealed that RNR can interact with the promoter of the cellular retinaldehyde binding protein gene in the presence of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR). These data raise the possibility that RNR acts to regulate the visual cycle through its interaction with cellular retinaldehyde binding protein and therefore may be a target for retinal diseases such as retinitis pigmentosa and age-related macular degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filamentous bacterial cells often provide biological information that is not readily evident in normal-size cells. In this study, the effect of cellular filamentation on gliding motility of Myxococcus xanthus, a Gram-negative social bacterium, was investigated. Elongation of the cell body had different effects on adventurous and social motility of M. xanthus. The rate of A-motility was insensitive to cell-body elongation whereas the rate of S-motility was reduced dramatically as the cell body got longer, indicating that these two motility systems work in different ways. The study also showed that filamentous wild-type cells glide smoothly with relatively straight, long cell bodies. However, filamentous cells of certain social motility mutants showed zigzag, tangled cell bodies on a solid surface, apparently a result of a lack of coordination between different fragments within the filaments. Further genetic and biochemical analyses indicated that the uncoordinated movements of these mutant filaments were correlated with the absence of cell surface fibril materials, indicating a possible new function for fibrils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cadherins are cell–cell adhesion receptors whose adhesive function requires their association with the actin cytoskeleton via proteins called catenins. The small guanosine triphosphatases (GTPases), Rho and Rac, are intracellular proteins that regulate the formation of distinct actin structures in different cell types. In keratinocytes and in other epithelial cells, Rho and Rac activities are required for E-cadherin function. Here we show that the regulation of cadherin adhesiveness by the small GTPases is influenced by the maturation status of the junction and the cellular context. E-cadherin localization was disrupted in mature keratinocyte junctions after inhibition of Rho and Rac. However, an incubation of 2 h was required after GTPase inhibition, when compared with newly established E-cadherin contacts (30 min). Regarding other cadherin receptors, P-cadherin was effectively removed from mature keratinocytes junctions by blocking Rho or Rac. In contrast, VE-cadherin localization at endothelial junctions was independent of Rho/Rac activity. We demontrate that the insensitivity of VE-cadherin to inhibition of Rho and Rac was not due to the maturation status of endothelial junction, but rather the cellular background: when transfected into CHO cells, the localization of VE-cadherin was perturbed by inhibition of Rho proteins. Our results suggest that the same stimuli may have different activity in regulating the paracellular activity in endothelial and epithelial cells. In addition, we uncovered possible roles for the small GTPases during the establishment of E-cadherin–dependent contacts. In keratinocytes, Rac activation by itself cannot promote accumulation of actin at the cell periphery in the absence of cadherin-dependent contacts. Moreover, neither Rho nor Rac activation was sufficient to redistribute cadherin molecules to cell borders, indicating that redistribution results mostly from the homophilic binding of the receptors. Our results point out the complexity of the regulation of cadherin-mediated adhesion by the small GTPases, Rho and Rac.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recruitment of intracellular proteins to the plasma membrane is a commonly found requirement for the initiation of signal transduction events. The recently discovered pleckstrin homology (PH) domain, a structurally conserved element found in ∼100 signaling proteins, has been implicated in this function, because some PH domains have been described to be involved in plasma membrane association. Furthermore, several PH domains bind to the phosphoinositides phosphatidylinositol-(4,5)-bisphosphate and phosphatidylinositol-(3,4,5)-trisphosphate in vitro, however, mostly with low affinity. It is unclear how such weak interactions can be responsible for observed membrane binding in vivo as well as the resulting biological phenomena. Here, we investigate the structural and functional requirements for membrane association of cytohesin-1, a recently discovered regulatory protein of T cell adhesion. We demonstrate that both the PH domain and the adjacent carboxyl-terminal polybasic sequence of cytohesin-1 (c domain) are necessary for plasma membrane association and biological function, namely interference with Jurkat cell adhesion to intercellular adhesion molecule 1. Biosensor measurements revealed that phosphatidylinositol-(3,4,5)-trisphosphate binds to the PH domain and c domain together with high affinity (100 nM), whereas the isolated PH domain has a substantially lower affinity (2–3 μM). The cooperativity of both elements appears specific, because a chimeric protein, consisting of the c domain of cytohesin-1 and the PH domain of the β-adrenergic receptor kinase does not associate with membranes, nor does it inhibit adhesion. Moreover, replacement of the c domain of cytohesin-1 with a palmitoylation–isoprenylation motif partially restored the biological function, but the specific targeting to the plasma membrane was not retained. Thus we conclude that two elements of cytohesin-1, the PH domain and the c domain, are required and sufficient for membrane association. This appears to be a common mechanism for plasma membrane targeting of PH domains, because we observed a similar functional cooperativity of the PH domain of Bruton’s tyrosine kinase with the adjacent Bruton’s tyrosine kinase motif, a novel zinc-containing fold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin-like growth factor–binding protein-5 (IGFBP-5) has been shown to bind to fibroblast extracellular matrix (ECM). Extracellular matrix binding of IGFBP-5 leads to a decrease in its affinity for insulin-like growth factor-I (IGF-I), which allows IGF-I to better equilibrate with IGF receptors. When the amount of IGFBP-5 that is bound to ECM is increased by exogenous addition, IGF-I’s effect on fibroblast growth is enhanced. In this study we identified the specific basic residues in IGFBP-5 that mediate its binding to porcine smooth-muscle cell (pSMC) ECM. An IGFBP-5 mutant containing alterations of basic residues at positions 211, 214, 217, and 218 had the greatest reduction in ECM binding, although three other mutants, R214A, R207A/K211N, and K202A/R206N/R207A, also had major decreases. In contrast, three other mutants, R201A/K202N/R206N/R208A, and K217N/R218A and K211N, had only minimal reductions in ECM binding. This suggested that residues R207 and R214 were the most important for binding, whereas alterations in K211 and R218, which align near them, had minimal effects. To determine the effect of a reduction in ECM binding on the cellular replication response to IGF-I, pSMCs were transfected with the mutant cDNAs that encoded the forms of IGFBPs with the greatest changes in ECM binding. The ECM content of IGFBP-5 from cultures expressing the K211N, R214A, R217A/R218A, and K202A/R206N/R207A mutants was reduced by 79.6 and 71.7%, respectively, compared with cells expressing the wild-type protein. In contrast, abundance of the R201A/K202N/R206N/R208A mutant was reduced by only 14%. Cells expressing the two mutants with reduced ECM binding had decreased DNA synthesis responses to IGF-I, but the cells expressing the R201A/K202N/R206N/R208A mutant responded well to IGF-I. The findings suggest that specific basic amino acids at positions 207 and 214 mediate the binding of IGFBP-5 to pSMC/ECM. Smooth-muscle cells that constitutively express the mutants that bind weakly to ECM are less responsive to IGF-I, suggesting that ECM binding of IGFBP-5 is an important variable that determines cellular responsiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The widely used immunosuppressant cyclosporine A (CSA) blocks nuclear translocation of the transcription factor, NF-AT (nuclear factor of activated T cells), preventing its activity. mRNA for several NF-AT isoforms has been shown to exist in cells outside of the immune system, suggesting a possible mechanism for side effects associated with CSA treatment. In this study, we demonstrate that CSA inhibits biochemical and morphological differentiation of skeletal muscle cells while having a minimal effect on proliferation. Furthermore, in vivo treatment with CSA inhibits muscle regeneration after induced trauma in mice. These results suggest a role for NF-AT–mediated transcription outside of the immune system. In subsequent experiments, we examined the activation and cellular localization of NF-AT in skeletal muscle cells in vitro. Known pharmacological inducers of NF-AT in lymphoid cells also stimulate transcription from an NF-AT–responsive reporter gene in muscle cells. Three isoforms of NF-AT (NF-ATp, c, and 4/x/c3) are present in the cytoplasm of muscle cells at all stages of myogenesis tested. However, each isoform undergoes calcium-induced nuclear translocation from the cytoplasm at specific stages of muscle differentiation, suggesting specificity among NF-AT isoforms in gene regulation. Strikingly, one isoform (NF-ATc) can preferentially translocate to a subset of nuclei within a single multinucleated myotube. These results demonstrate that skeletal muscle cells express functionally active NF-AT proteins and that the nuclear translocation of individual NF-AT isoforms, which is essential for the ability to coordinate gene expression, is influenced markedly by the differentiation state of the muscle cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Dictyostelium discoideum, a unique Gβ subunit is required for a G protein–coupled receptor system that mediates a variety of cellular responses. Binding of cAMP to cAR1, the receptor linked to the G protein G2, triggers a cascade of responses, including activation of adenylyl cyclase, gene induction, actin polymerization, and chemotaxis. Null mutations of the cAR1, Gα2, and Gβ genes completely impair all these responses. To dissect specificity in Gβγ signaling to downstream effectors in living cells, we screened a randomly mutagenized library of Gβ genes and isolated Gβ alleles that lacked the capacity to activate some effectors but retained the ability to regulate others. These mutant Gβ subunits were able to link cAR1 to G2, to support gene expression, and to mediate cAMP-induced actin polymerization, and some were able to mediate to chemotaxis toward cAMP. None was able to activate adenylyl cyclase, and some did not support chemotaxis. Thus, we separated in vivo functions of Gβγ by making point mutations on Gβ. Using the structure of the heterotrimeric G protein displayed in the computer program CHAIN, we examined the positions and the molecular interactions of the amino acids substituted in each of the mutant Gβs and analyzed the possible effects of each replacement. We identified several residues that are crucial for activation of the adenylyl cyclase. These residues formed an area that overlaps but is not identical to regions where bovine Gtβγ interacts with its regulators, Gα and phosducin.