991 resultados para Cellini, Benvenuto, 1500-1571.
Resumo:
A copper-rich cereal: Superhydrophobic copper particles show a very large Cheerios effect and rapidly self-assemble into robust sheets on the surface of water. These sheets can support objects (including water drops, see photo) placed on them, even though the irregular geometry of the particles means that they contain macroscopic holes.
Resumo:
The kinetic resolution of racemic sulfoxides by dimethyl sulfoxide (DMSO) reductases was investigated with a range of microorganisms. Three bacterial isolates (provisionally identified as Citrobacter braakii, Klebsiella sp. and Serratia sp.) expressing DMSO reductase activity were isolated from environmental samples by anaerobic enrichment with DMSO as terminal electron acceptor. The organisms reduced a diverse range of racemic sulfoxides to yield either residual enantiomer depending upon the strain used. C. braakii DMSO-11 exhibited wide substrate specificity that included dialkyl, diaryl and alkylaryl sulfoxides, and was unique in its ability to reduce the thiosulfinate 1,4-dihydrobenzo-2, 3-dithian-2-oxide. DMSO reductase was purified from the periplasmic fraction of C. braakii DMSO-11 and was used to demonstrate unequivocally that the DMSO reductase was responsible for enantiospecific reductive resolution of racemic sulfoxides.
Resumo:
Several potential approaches to the enzyme-catalysed synthesis of arene trans-diols have been examined including epoxidation/hydrolysis, bis-benzylic hydroxylation, cis-dihydroxylation/alcohol dehydrogenation/ketone reduction, cisdihydroxylation/cis-trans isomerisation. and multi-enzyme synthesis of trans-dihydrodiol secondary metabolites from primary metabolites. The lack of general applicability of these enzymatic methods has led to the development of several chemoenzymatic routes for the synthesis of a series of trans-dihydrodiols from the readily available cis-dihydrodiol precursors. Partial hydrogenation of cis-dihydrodiol metabolites to yield the corresponding cis-tetrahydrodiols followed by a regioselective Mitsunobu inversion process gave trans-tetrahydrodiols that were in turn converted to trans-dihydrodiols. The formation of anti-benzene dioxides or iron tricarbonyl complexes from the corresponding cis-dihydrodiol precursors provided shorter and more convenient chemoenzymatic routes to trans-dihydrodiols. The application of cis-dihydrodiol metabolites of polycyclic azaarenes in the synthesis of the corresponding arene oxides followed by chemical hydrolysis provides a convenient route to trans-dihydrodiols. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A series of Cu-zirconia catalysts containing various additives (Y2O3, La2O3, Al2O3 and CeO2) have been prepared by coprecipitation and their activities and stabilities under operating conditions have been obtained for the steam reforming of methanol. It has been found that an yttria-promoted catalyst containing 30 mol% Cu and 20 mol% of Y2O3 is not only very active but is also very stable under reaction conditions. The yttria appears to stabilise a high copper surface area and may also have a slight promotional effect on the copper. The results obtained with this material compare very favourably with data for the best catalysts reported in the literature. (C) 2007 Published by Elsevier B.V.
Resumo:
The sulfur tolerance of a barium-containing NOx storage/reduction trap was investigated using infrared analysis. It was confirmed that barium carbonate could be replaced by barium sulfate by reaction with low concentrations of sulfur dioxide (50 ppm) in the presence of large concentrations of carbon dioxide (10%) at temperatures up to 700 degreesC. These sulfates could at least be partially removed by switching to hydrogen-rich conditions at elevated temperatures. Thermodynamic calculations were used to evaluate the effects of gas composition and temperature on the various reactions of barium sulfate and carbonate under oxidizing and reducing conditions. These calculations clearly showed that if, under a hydrogen-rich atmosphere, carbon dioxide is included as a reactant and barium carbonate as a product then barium sulfate can be removed by reaction with carbon dioxide at a much lower temperature than is possible by decomposition to barium oxide. It was also found that if hydrogen sulfide was included as a product of decomposition of barium sulfate instead of sulfur dioxide then the temperature of reaction could be significantly lowered. Similar calculations were conducted using a selection of other alkaline-earth and alkali metals. In this case calculations were simulated in a gas mixture containing carbon monoxide, hydrogen and carbon dioxide with partial pressures similar to those encountered in real exhausts during switches to rich conditions. The results indicated that there are metals such as lithium and strontium with less stable sulfates than barium, which may also possess sufficient NOx storage capacity to give sulfur-tolerant NOx traps.
Resumo:
The nature of the silver phases of Ag/Al2O3 catalysts (prepared by silver nitrate impregnation followed by calcination) was investigated by X-ray diffractograms (XRD), transmission electron microscopy (TEM) and UV-VIS analyses and related to the activity of the corresponding materials for the oxidation of NO to NO2. The UV-VIS spectrum of the 1.2 wt.% Ag/Al2O3 exhibited essentially one band associated with Ag+ species and the NO2 yields measured over this material were negligible. A 10 wt.% Ag/Al2O3 material showed the presence of oxidic species of silver (as isolated Ag+ cations and silver aluminate), but the UV-VIS data also revealed the presence of some metallic silver. The activity for the NO oxidation to NO2 of this sample was moderate. The same 10% sample either reduced in H-2 or used for the C3H6-selective catalytic reduction (SCR) of NO showed a significantly larger proportion of silver metallic phases and these samples displayed a high activity for the formation of NO2. These data show that the structure and nature of the silver phases of Ag/Al2O3 catalysts can markedly change under reaction feed containing only a fraction of reducing agent (i.e. 500 ppm of propene) in net oxidizing conditions (2.5% O-2). The low activity for N-2 formation during the C3H6-SCR of NO (reported in an earlier study) over the high loading sample can. therefore, he related to the presence of metallic silver. which is yet a good catalyst for NO oxidation to NO2. The reverse observations apply for the oxide species observed over the low loading sample, which is a good SCR catalyst but do not oxidize NO to NO2. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Chitosan nanoparticles fabricated via different preparation protocols have been in recent years widely studied as carriers for therapeutic proteins and genes with varying degree of effectiveness and drawbacks. This work seeks to further explore the polyionic coacervation fabrication process, and associated processing conditions under which protein encapsulation and subsequent release can be systematically and predictably manipulated so as to obtain desired effectiveness. BSA was used as a model protein which was encapsulated by either incorporation or incubation method, using the polyanion tripolyphosphate (TPP) as the coacervation crosslink agent to form chitosan-BSA-TPP nanoparticles. The BSA-loaded chitosan-TPP nanoparticles were characterized for particle size, morphology, zeta potential, BSA encapsulation efficiency, and subsequent release kinetics, which were found predominantly dependent on the factors of chitosan molecular weight, chitosan concentration, BSA loading concentration, and chitosan/TPP mass ratio. The BSA loaded nanoparticles prepared under varying conditions were in the size range of 200-580 nm, and exhibit a high positive zeta potential. Detailed sequential time frame TEM imaging of morphological change of the BSA loaded particles showed a swelling and particle degradation process. Initial burst released due to surface protein desorption and diffusion from sublayers did not relate directly to change of particle size and shape, which was eminently apparent only after 6 h. It is also notable that later stage particle degradation and disintegration did not yield a substantial follow-on release, as the remaining protein molecules, with adaptable 3-D conformation, could be tightly bound and entangled with the cationic chitosan chains. In general, this study demonstrated that the polyionic coacervation process for fabricating protein loaded chitosan nanoparticles offers simple preparation conditions and a clear processing window for manipulation of physiochemical properties of the nanoparticles (e.g., size and surface charge), which can be conditioned to exert control over protein encapsulation efficiency and subsequent release profile. The weakness of the chitosan nanoparticle system lies typically with difficulties in controlling initial burst effect in releasing large quantities of protein molecules. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Chitins produced via a conventional chemical route as well as from a new biological process were modified to increase the efficiency of enzymatic deacetylation reactions for the production of novel biological chitosan. These modified chitins were reacted for 24h with extracellular fungal enzymes from Colletotrichum lindemuthianum. The chemical and physical properties of the various substrates were analysed and their properties related to the effectiveness in the deacetylation reaction. Modifications of the chitins affected the degree of deacetylation with varied effects. Without further modification to reduce crystallinity and to open up the solid substrate structure, the chitins were found to be poor substrates for the heterogeneous solid-liquid enzymatic catalysis. It was found that the solvent and drying method used in modifying the chitins had significant impact on the final efficiency of the enzymatic deacetylation reaction. The most successful modifications through freeze drying of a colloidal chitin suspension increased the degree of enzymatic deacetylation by 20 fold. These processes reduce the crystallinity of the chitin making it easier for the enzymes to access their internal structure. X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and BET isotherm analysis are employed to characterise the modified chitins to ascertain the degree of crystallinity, porous structure, surface area, and morphology.
Resumo:
This study assesses the use of dried (5% w/w moisture) kudzu (Peuraria lobata ohwi) as an adsorbent medium for the removal of two basic dyes, Basic Yellow 21 and Basic Red 22, from aqueous solutions. The extent of adsorption was measured through equilibrium sorption isotherms for the single component systems. Equilibrium was achieved after 21 days. The experimental isotherm data were analysed using Langmuir, Freundlich, Redlich-Peterson, Temkin and Toth isotherm equations. A detailed error analysis was undertaken to investigate the effect of using different error criteria for the determination of the single component isotherm parameters. The performance of the kudzu was compared with an activated carbon (Chemviron F-400). Kudzu was found to be an effective adsorbent for basic dye colour removal, though its capacity for colour removal was not as high as an activated carbon, the potential appeared to exist to use it as an alternative to activated carbon where carbon cost was prohibitive. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper discusses a number of checks that should be carried out to ensure that the kinetic and spectroscopic measurements made using a DRIFTS cell are meaningful. The observations reported here demonstrate how an appropriately modified commercial DRIFTS cell can provide pertinent kinetic information about both gaseous products and the related surface intermediates. The oxidation of CO with 02 was used as a test to assess the catalyst bed bypass by the reaction mixture. Full CO conversion was obtained after the light-off temperature in the case of the modified cell, contrary to the case of the original cell, for which 80% of the reaction mixture bypassed the catalyst bed. The water-gas shift reaction over a Pt/CeO2 catalyst was used as a model reaction to further characterize the behavior of the cell under reaction conditions. The catalyst bed was shown not to be a dead-zone and was purged in essentially the same time as that needed to purge the cell. The reaction chamber globally operated in a quasi plug-flow mode and the gas composition in the thin catalyst bed appears to be homogeneous when operated under differential conditions. The production of the gas-phase reaction product CO2 could be simultaneously followed both by mass spectrometry and DRIFTS, both techniques leading to identical results. Various IR bands integration methods were discussed to allow a precise and accurate determination of the surface concentration of adsorbates during isotopic exchange. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The reaction mechanism and the rate-determining step (RDS) of the isomerisation of n-alkanes (C-4-C-6) over partially reduced MoO3 catalysts were studied through the effects of the addition of an alkene isomerisation catalyst (i.e. CoAlPO- 11). When an acidic CoAlPO- 11 sample was mechanically mixed with the MoO3, a decrease of the induction period and an increase of the steady-state conversion of n-butane to isobutane were observed. These data support previous assumptions that a bifunctional mechanism occurred over the partially reduced MoO3 (a complex nanoscale mixture of oxide-based phases) during n-butane isomerisation and that the RDS was the skeletal isomerisation of the linear butene intermediates. The only promotional effect of CoAlPO-11 on the activity of partially reduced MoO3 for C-5-C-6 alkane hydroisomerisation was a reduction of the induction period, as the RDS at steady-state conditions appeared to be dehydrogenation of the alkane in this case. However, lower yields of branched isomers were observed in this case, the reason of which is yet unclear. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In Ireland, the Middle to Late Bronze Age (1500-600 cal. B.C.) is characterised by alternating phases of prolific metalwork production (the Bishopsland and Dowris Phases) and apparent recessions (the Roscommon Phase and the Late Bronze Age-Iron Age transition). In this paper, these changes in material culture are placed in a socio-economic context by examining contemporary settlement and land-use patterns interpreted from the pollen record. The vegetation histories of six tephrochronologically-linked sites are presented that provide high-resolution and chronologically well-resolved insights into changes in landscape use over the Middle to Late Bronze Age. The records are compared with published pollen records in an attempt to discern if there are any trends of woodland clearance and abandonment from which changes in settlement patterns can be inferred. The results suggest that prolific metalworking industries correlate chronologically with expansive farming activity, which indicates that they were supported by a productive subsistence economy. Conversely, declines in metalwork production occur during periods when farming activity is generally less extensive and perhaps more centralised, and it is proposed that disparate socio-economic or –political factors, rather than a collapse of the subsistence economy, lies behind the demise of metalworking industries.