992 resultados para Carotid artery injuries
Resumo:
Carotid bodies are chemoreceptors sensitive to a fall of partial oxygen pressure in blood (hypoxia). The morphological alterations of these organs in patients with chronic obstructive pulmonary disease (COPD) and in people living at high altitude are well known. However, it is not known whether the histological profile of human carotid bodies is changed in acute clinical conditions such as acute respiratory distress syndrome (ARDS). The objective of the present study was to perform a quantitative analysis of the histology of carotid bodies collected from patients who died of ARDS. A morphometric study of carotid bodies collected during routine autopsies was carried out on three groups: patients that died of non-respiratory diseases (controls, N = 8), patients that presented COPD and died of its complications or associated diseases (N = 7), and patients that died of ARDS (N = 7). Morphometric measurements of the volume fraction of clusters of chief cells were performed in five fields on each slide at 40X magnification. The numerical proportion of the four main histological cell types (light, dark, progenitor and sustentacular cells) was determined analyzing 10 fields on each slide at 400X magnification. The proportion of dark cells was 0.22 in ARDS patients, 0.12 in controls (P<0.001), and 0.08 in the COPD group. The proportion of light cells was 0.33 (ARDS), 0.44 (controls) (P<0.001), and 0.36 (COPD). These findings suggest that chronic and acute hypoxia have different effects on the histology of glomic tissue.
Resumo:
Studies that consider polymorphisms within the apolipoprotein B (apo B) gene as risk factors for coronary artery disease (CAD) have reported conflicting results. The aim of the present study was to search for associations between two DNA RFLPs (XbaI and EcoRI) of the apo B gene and CAD diagnosed by angiography. In the present study we compared 116 Brazilian patients (92 men) with CAD (CAD+) to 78 control patients (26 men) without ischemia or arterial damage (CAD-). The allele frequencies at the XbaI (X) and EcoRI (E) sites did not differ between groups. The genotype distributions of CAD+ and CAD- patients were different (chi²(1) = 6.27, P = 0.012) when assigned to two classes (X-X-/E+E+ and the remaining XbaI/EcoRI genotypes). Multivariate logistic regression analysis showed that individuals with the X-X-/E+E+ genotype presented a 6.1 higher chance of developing CAD than individuals with the other XbaI/EcoRI genotypes, independently of the other risk factors considered (sex, tobacco consumption, total cholesterol, hypertension, and triglycerides). We conclude that the X-X-/E+E genotype may be in linkage disequilibrium with an unknown variation in the apo B gene or with a variation in another gene that affects the risk of CAD.
Resumo:
High levels of von Willebrand factor (vWF) have been associated with cardiovascular disease. The A allele of the -1185A/G polymorphism in the 5'-regulatory region of the vWF gene was associated with the highest plasma vWF levels in a normal population. To examine the association between -1185A/G polymorphism and coronary artery disease (CAD), 173 Brazilian Caucasian subjects submitted to coronary angiography were studied. Of these, 57 (33%) had normal coronary arteries (control group) and 116 (67%) had CAD (patient group). Plasma vWF levels were higher in patients (145 U/dl) than in controls (130 U/dl), but the differences were significant only for O blood group subjects. Polymerase chain reaction amplification of the 864-bp vWF promoter region followed by AccII restriction digestion was used to identify the -1185A/G genotypes. The -1185A allele frequency was 43.1% in patients and 44.7% in controls. Allele and genotype frequencies were not significantly different between patients and controls. No association was observed between the -1185A/G genotypes and plasma vWF levels in patients or controls. These results suggest that -1185A/G polymorphism is not an independent risk factor for CAD.
Resumo:
To determine if radiocontrast impairs vascular relaxation of the renal artery, segments (4-5 mm in length) of canine renal artery were suspended in vitro in organ chambers to measure isometric force (95% O2/5% CO2, at 37ºC). Arterial segments with and without endothelium were placed at the optimal point of their length-tension relation and incubated with 10 µM indomethacin to prevent synthesis of endogenous prostanoids. The presence of nonionic radiocontrast (iohexol, Omnipaque 350, 1 ml in 25 ml control solution, 4% (v/v)) did not alter endothelium-dependent relaxation to acetylcholine in rings precontracted with both norepinephrine and prostaglandin F2alpha (N = 6). When the rings were precontracted with prostaglandin F2alpha, the presence of ionic contrast did not inhibit the relaxation of the arteries. However, in canine renal arteries contracted with norepinephrine, the presence of ionic radiocontrast (diatrizoate meglumine and diatrizoate sodium, MD-76, 1 ml in 25 ml control solution, 4% (v/v)) inhibited relaxation in response to acetylcholine, sodium nitroprusside (N = 6 in each group), and isoproterenol (N = 5; P < 0.05). Rings were relaxed less than 50% of norepinephrine contraction. Following removal of the contrast, vascular relaxation in response to the agonists returned to normal. These results indicate that ionic radiocontrast nonspecifically inhibits vasodilation (both cAMP-mediated and cGMP-mediated) of canine renal arteries contracted with norepinephrine. This reversible impairment of vasodilation could inhibit normal renal perfusion and act as a mechanism of renal failure following radiocontrast infusion. In the adopted experimental protocol the isoproterenol-induced relaxation of renal arteries precontracted with norepinephrine was more affected, suggesting a pivotal role of the cAMP system.
Resumo:
The present study investigated the protective effect of N-acetylcysteine (NAC) against oxygen radical-mediated coronary artery injury. Vascular contraction and relaxation were determined in canine coronary arteries immersed in Kreb's solution (95% O2-5% CO2), incubated or not with NAC (10 mM), and exposed to free radicals (FR) generated by xanthine oxidase (100 mU/ml) plus xanthine (0.1 mM). Rings not exposed to FR or NAC were used as controls. The arteries were contracted with 2.5 µM prostaglandin F2alpha. Subsequently, concentration-response curves for acetylcholine, calcium ionophore and sodium fluoride were obtained in the presence of 20 µM indomethacin. Concentration-response curves for bradykinin, calcium ionophore, sodium nitroprusside, and pinacidil were obtained in the presence of indomethacin plus Nomega-nitro-L-arginine (0.2 mM). The oxidative stress reduced the vascular contraction of arteries not exposed to NAC (3.93 ± 3.42 g), compared to control (8.56 ± 3.16 g) and to NAC group (9.07 ± 4.0 g). Additionally, in arteries not exposed to NAC the endothelium-dependent nitric oxide (NO)-dependent relaxation promoted by acetylcholine (1 nM to 10 µM) was also reduced (maximal relaxation of 52.1 ± 43.2%), compared to control (100%) and NAC group (97.0 ± 4.3%), as well as the NO/cyclooxygenase-independent receptor-dependent relaxation provoked by bradykinin (1 nM to 10 µM; maximal relaxation of 20.0 ± 21.2%), compared to control (100%) and NAC group (70.8 ± 20.0%). The endothelium-independent relaxation elicited by sodium nitroprusside (1 nM to 1 µM) and pinacidil (1 nM to 10 µM) was not affected. In conclusion, the vascular dysfunction caused by the oxidative stress, expressed as reduction of the endothelium-dependent relaxation and of the vascular smooth muscle contraction, was prevented by NAC.
Resumo:
Cardiopulmonary bypass is frequently associated with excessive blood loss. Platelet dysfunction is the main cause of non-surgical bleeding after open-heart surgery. We randomized 65 patients in a double-blind fashion to receive tranexamic acid or placebo in order to determine whether antifibrinolytic therapy reduces chest tube drainage. The tranexamic acid group received an intravenous loading dose of 10 mg/kg, before the skin incision, followed by a continuous infusion of 1 mg kg-1 h-1 for 5 h. The placebo group received a bolus of normal saline solution and continuous infusion of normal saline for 5 h. Postoperative bleeding and fibrinolytic activity were assessed. Hematologic data, convulsive seizures, allogeneic transfusion, occurrence of myocardial infarction, mortality, allergic reactions, postoperative renal insufficiency, and reopening rate were also evaluated. The placebo group had a greater postoperative blood loss (median (25th to 75th percentile) 12 h after surgery (540 (350-750) vs 300 (250-455) mL, P = 0.001). The placebo group also had greater blood loss 24 h after surgery (800 (520-1050) vs 500 (415-725) mL, P = 0.008). There was a significant increase in plasma D-dimer levels after coronary artery bypass grafting only in patients of the placebo group, whereas no significant changes were observed in the group treated with tranexamic acid. The D-dimer levels were 1057 (1025-1100) µg/L in the placebo group and 520 (435-837) µg/L in the tranexamic acid group (P = 0.01). We conclude that tranexamic acid effectively reduces postoperative bleeding and fibrinolysis in patients undergoing first-time coronary artery bypass grafting compared to placebo.
Resumo:
We examined the association of three established single nucleotide polymorphisms, IVS1-397T>C, IVS1-351A>G, and +261G>C, in the ESR1 gene with the prevalence and severity of coronary atherosclerosis in a southern Brazilian population of European ancestry. Three hundred and forty-one subjects (127 women and 214 men) with coronary artery disease (CAD) were classified as having significant disease (CAD+ patient group) when they showed 60% or more luminal stenosis in at least one coronary artery or major branch segment at angiography; patients with 10% or less luminal stenosis were considered to have minimal CAD (CAD- patient group). The control sample consisted of 142 subjects (79 women and 63 men) without significant disease, in whom coronary angiography to rule out the presence of asymptomatic CAD was not performed. The polymorphisms were investigated by polymerase chain reaction followed by restriction analyses. In the male sample, the +261G>C*C allele was more frequent in CAD+ than CAD- subjects (8 versus 1%, P = 0.024). Homozygosity for the C allele of the IVS1-397T>C polymorphism was also significantly associated with increased CAD severity (OR: 2.99; 95% CI = 1.35-6.63; P = 0.007). In agreement with previous findings, these results suggest that the IVS1-397T>C*C allele was associated with CAD severity independent of gender, whereas the association of the +261G>C variant with CAD was observed in males only. The relation between ESR1 variation and CAD may influence clinical decisions such as the use of hormone therapy, and additionally will be helpful to identify the genetic susceptibility determinants of cardiovascular disease development.
Resumo:
Hyperhomocystinemia has been related to an increased risk of cardiovascular disease in several studies. The C677T polymorphism for the gene that encodes the methylenetetrahydrofolate reductase enzyme (MTHFR) and low plasma folate levels are common causes of hyperhomocystinemia. Due to differences in nutritional patterns and genetic background among different countries, we evaluated the role of hyperhomocystinemia as a coronary artery disease (CAD) risk factor in a Brazilian population. The relation between homocysteine (Hcy) and the extent of CAD, measured by an angiographic score, was determined. A total of 236 patients referred for coronary angiography for clinical reasons were included. CAD was found in 148 (62.7%) patients and 88 subjects had normal or near normal arteries. Patients with CAD had higher Hcy levels [mean (SD)] than those without disease (14 (6.8) vs 12.5 (4.0) µM; P = 0.04). Hyperhomocystinemia (Hcy >17.8 µM) prevalence was higher in the CAD group: 31.1 vs 12.2% (P = 0.01). After adjustment for major risk factors, we found an independent association between hyperhomocystinemia and CAD (OR = 2.48; 95% CI = 1.02-6.14). Patients with a more advanced coronary score had a higher frequency of hyperhomocystinemia and tended to have higher mean Hcy levels. An inverse relation between plasma folate and Hcy levels was found (r = -0.14; P = 0.04). Individuals with the MTHFR C677T polymorphism had a higher prevalence of hyperhomocystinemia than those without the mutated allele. We conclude that hyperhomocystinemia is independently associated with CAD, with a positive association between Hcy level and disease severity.
Resumo:
Coronary artery disease is an atherosclerotic disease, which leads to narrowing of coronary arteries, deteriorated myocardial blood flow and myocardial ischaemia. In acute myocardial infarction, a prolonged period of myocardial ischaemia leads to myocardial necrosis. Necrotic myocardium is replaced with scar tissue. Myocardial infarction results in various changes in cardiac structure and function over time that results in “adverse remodelling”. This remodelling may result in a progressive worsening of cardiac function and development of chronic heart failure. In this thesis, we developed and validated three different large animal models of coronary artery disease, myocardial ischaemia and infarction for translational studies. In the first study the coronary artery disease model had both induced diabetes and hypercholesterolemia. In the second study myocardial ischaemia and infarction were caused by a surgical method and in the third study by catheterisation. For model characterisation, we used non-invasive positron emission tomography (PET) methods for measurement of myocardial perfusion, oxidative metabolism and glucose utilisation. Additionally, cardiac function was measured by echocardiography and computed tomography. To study the metabolic changes that occur during atherosclerosis, a hypercholesterolemic and diabetic model was used with [18F] fluorodeoxyglucose ([18F]FDG) PET-imaging technology. Coronary occlusion models were used to evaluate metabolic and structural changes in the heart and the cardioprotective effects of levosimendan during post-infarction cardiac remodelling. Large animal models were used in testing of novel radiopharmaceuticals for myocardial perfusion imaging. In the coronary artery disease model, we observed atherosclerotic lesions that were associated with focally increased [18F]FDG uptake. In heart failure models, chronic myocardial infarction led to the worsening of systolic function, cardiac remodelling and decreased efficiency of cardiac pumping function. Levosimendan therapy reduced post-infarction myocardial infarct size and improved cardiac function. The novel 68Ga-labeled radiopharmaceuticals tested in this study were not successful for the determination of myocardial blood flow. In conclusion, diabetes and hypercholesterolemia lead to the development of early phase atherosclerotic lesions. Coronary artery occlusion produced considerable myocardial ischaemia and later infarction following myocardial remodelling. The experimental models evaluated in these studies will enable further studies concerning disease mechanisms, new radiopharmaceuticals and interventions in coronary artery disease and heart failure.
Resumo:
Apolipoprotein E (apoE - e2, e3, e4 alleles) plays a role in the regulation of lipid metabolism, with the e4 considered to be a risk factor for coronary artery disease (CAD). We aimed to evaluate the apoE polymorphisms in Brazilians with CAD and their influence on the lipid profile and other risk factors (hypertension, diabetes mellitus, smoking). Two hundred individuals were examined: 100 patients with atherosclerosis confirmed by coronary angiography and 100 controls. Blood samples were drawn to determine apoE polymorphisms and lipid profile. As expected, the e3 allele was prevalent in the CAD (0.87) and non-CAD groups (0.81; P = 0.099), followed by the e4 allele (0.09 and 0.14, respectively; P = 0.158). The e3/3 (76 and 78%) and e3/4 (16 and 23%) were the most common genotypes for patients and controls, respectively. The lipid profile was altered in patients compared to controls (P < 0.05), independently of the e4 allele. However, in the controls this allele was prevalent in individuals with elevated LDL-cholesterol levels only (odds ratio = 2.531; 95% CI = 1.028-6.232). The frequency of risk factors was higher in the CAD group (P < 0.05), but their association with the lipid profile was not demonstrable in e4 carriers. In conclusion, the e4 allele is not associated with CAD or lipid profile in patients with atherosclerosis. However, its frequency in the non-CAD group is associated with increased levels of LDL-cholesterol, suggesting an independent effect of the e4 allele on lipid profile when the low frequency of other risk factors in this group is taken into account.
Resumo:
We investigated whether hepatic artery endothelium may be the earliest site of injury consequent to liver ischemia and reperfusion. Twenty-four heartworm-free mongrel dogs of either sex exposed to liver ischemia/reperfusion in vivo were randomized into four experimental groups (N = 6): a) control, sham-operated dogs, b) dogs subjected to 60 min of ischemia, c) dogs subjected to 30 min of ischemia and 60 min of reperfusion, and d) animals subjected to 45 min of ischemia and 120 min of reperfusion. The nitric oxide endothelium-dependent relaxation of hepatic artery rings contracted with prostaglandin F2a and exposed to increasing concentrations of acetylcholine, calcium ionophore A23187, sodium fluoride, phospholipase-C, poly-L-arginine, isoproterenol, and sodium nitroprusside was evaluated in organ-chamber experiments. Lipid peroxidation was estimated by malondialdehyde activity in liver tissue samples and by blood lactic dehydrogenase (LDH), serum aspartate aminotransferase (AST) and serum alanine aminotransferase (ALT) activities. No changes were observed in hepatic artery relaxation for any agonist tested. The group subjected to 45 min of ischemia and 120 min of reperfusion presented marked increases of serum aminotransferases (ALT = 2989 ± 1056 U/L and AST = 1268 ± 371 U/L; P < 0.01), LDH = 2887 ± 1213 IU/L; P < 0.01) and malondialdehyde in liver samples (0.360 ± 0.020 nmol/mgPT; P < 0.05). Under the experimental conditions utilized, no abnormal changes in hepatic arterial vasoreactivity were observed: endothelium-dependent and independent hepatic artery vasodilation were not impaired in this canine model of ischemia/reperfusion injury. In contrast to other vital organs and in the ischemia/reperfusion injury environment, dysfunction of the main artery endothelium is not the first site of reperfusion injury.
Resumo:
The investigation of resistance vessels is generally costly and difficult to execute. The present study investigated the diameters and the vascular reactivity of different segments of the rat tail artery (base, middle, and tail end) of 30 male Wister rats (EPM strain) to characterize a conductance or resistance vessel, using a low-cost simple technique. The diameters (mean ± SEM) of the base and middle segments were 471 ± 4.97 and 540 ± 8.39 µm, respectively, the tail end was 253 ± 2.58 µm. To test reactivity, the whole tail arteries or segments were perfused under constant flow and the reactivity to phenylephrine (PHE; 0.01-300 µg) was evaluated before and after removal of the endothelium or drug administration. The maximal response (Emax) and sensitivity (pED50) to PHE of the whole tail and the base segment increased after endothelium removal or treatment with 100 µM L-NAME, which suggests modulation by nitric oxide. Indomethacin (10 µM) and tetraethylammonium (5 mM) did not change the Emax or pED50 of these segments. PHE and L-NAME increased the pED50 of the middle and the tail end only and indomethacin did not change pED50 or Emax. Tetraethylammonium increased the sensitivity only at the tail end, which suggests a blockade of vasodilator release. Results indicate that the proximal segment of the tail artery possesses a diameter compatible with a conductance vessel, while the tail end has the diameter of a resistance vessel. In addition, the vascular reactivity to PHE in the proximal segment is nitric oxide-dependent, while the tail end is dependent on endothelium-derived hyperpolarizing factor.
Resumo:
Endothelial function (EF) plays an important role in the onset and clinical course of atherosclerosis, although its relationship with the presence and extent of coronary artery disease (CAD) has not been well defined. We evaluated EF and the ST segment response to an exercise test in patients with a broad spectrum of CAD defined by coronary angiography. Sixty-two patients submitted to diagnostic catheterization for the evaluation of chest pain or ischemia in a provocative test were divided into three groups according to the presence and severity of atherosclerotic lesions (AL): group 1: normal coronaries (N = 19); group 2: CAD with AL <70% (N = 17); group 3: CAD with AL ≥70% (N = 26). EF was evaluated by the percentage of flow-mediated dilatation (%FMD) in the brachial artery during reactive hyperemia induced by occlusion of the forearm with a pneumatic cuff for 5 min. Fifty-four patients were subjected to an exercise test. Gender and age were not significantly correlated with %FMD. EF was markedly reduced in both groups with CAD (76.5 and 73.1% vs 31.6% in group 1) and a higher frequency of ischemic alterations in the ST segment (70.8%) was observed in the group with obstructive CAD with AL ≥70% during the exercise test. Endothelial dysfunction was observed in patients with CAD, irrespective of the severity of injury. A significantly higher frequency of ischemic alterations in the ST segment was observed in the group with obstructive CAD. EF and exercise ECG differed among the three groups and may provide complementary information for the assessment of CAD.
Effect of carotid and aortic baroreceptors on cardiopulmonary reflex: the role of autonomic function
Resumo:
We determined the sympathetic and parasympathetic control of heart rate (HR) and the sensitivity of the cardiopulmonary receptors after selective carotid and aortic denervation. We also investigated the participation of the autonomic nervous system in the Bezold-Jarish reflex after selective removal of aortic and carotid baroreceptors. Male Wistar rats (220-270 g) were divided into three groups: control (CG, N = 8), aortic denervation (AG, N = 5) and carotid denervation (CAG, N = 9). AG animals presented increased arterial pressure (12%) and HR (11%) compared with CG, while CAG animals presented a reduction in arterial pressure (16%) and unchanged HR compared with CG. The sequential blockade of autonomic effects by atropine and propranolol indicated a reduction in vagal function in CAG (a 50 and 62% reduction in vagal effect and tonus, respectively) while AG showed an increase of more than 100% in sympathetic control of HR. The Bezold-Jarish reflex was evaluated using serotonin, which induced increased bradycardia and hypotension in AG and CAG, suggesting that the sensitivity of the cardiopulmonary reflex is augmented after selective denervation. Atropine administration abolished the bradycardic responses induced by serotonin in all groups; however, the hypotensive response was still increased in AG. Although the responses after atropine were lower than the responses before the drug, indicating a reduction in vagal outflow after selective denervation, our data suggest that both denervation procedures are associated with an increase in sympathetic modulation of the vessels, indicating that the sensitivity of the cardiopulmonary receptors was modulated by baroreceptor fibers.
Resumo:
The objective of the present study was to evaluate the risk factors associated with the presence of coronary artery calcification (CAC) in patients with type 1 diabetes (T1D). A cross-sectional study was conducted on 100 consecutive T1D patients without coronary artery disease, with at least 5 years of diabetes and absence of end-stage renal disease. Mean age was 38 ± 10 years and 57% were males. CAC score was measured by multidetector computed tomography (Siemens Sensation 64 Cardiac). The insulin resistance index was measured using the estimated glucose disposal rate (eGDR). The eGDR was lower among CAC-positive patients than among CAC-negative patients, suggesting an increased insulin resistance. In a logistic regression model adjusted for age (at 10-year intervals), eGDR, diabetic nephropathy and gender, CAC was associated with age [OR = 2.73 (95%CI = 1.53-4.86), P = 0.001] and with eGDR [OR = 0.08 (95%CI = 0.02-0.21), P = 0.004]. In T1D subjects, insulin resistance is one of the most important risk factors for subclinical atherosclerosis.