988 resultados para Career changes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analysis of extensive nutrient data sets from two river-dominated coastal ecosystems, the northern Adriatic Sea and the northern Gulf of Mexico, demonstrating significant changes in surface nutrient ratios over a period of 30 years. The silicon:nitrogen ratios have decreased, indicating increased potential for silicon limitation. The nitrogen:phosphorus and the silicon:phosphorus ratios have also changed substantially, and the coastal nutrient structures have become more balanced and potentially less limiting for phytoplankton growth. It is likely that net phytoplankton productivity increased under these conditions and was accompanied by increasing bottom water hypoxia and major changes in community species composition. These findings support the hypothesis that increasing coastal eutrophication to date may be associated with stoichiometric nutrient balance, due to increasing potential for silicon limitation and decreasing potential for nitrogen and phosphorus limitation. On a worldwide basis, coastal ecosystems adjacent to rivers influenced by anthropogenic nutrient loads may experience similar alterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Natural Science Foundation of China [40471134]; program of Lights of the West China by the Chinese Academy of Science

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Change in thermal conditions can substantially affect crop growth, cropping systems, agricultural production and land use. In the present study, we used annual accumulated temperatures > 10 degrees C (AAT10) as an indicator to investigate the spatio-temporal changes in thermal conditions across China from the late 1980s to 2000, with a spatial resolution of 1 x 1 km. We also investigated the effects of the spatio-temporal changes on cultivated land use and cropping systems. We found that AAT10 has increased on a national scale since the late 1980s, Particularly, 3.16 x 10(5) km(2) of land moved from the spring wheat zone (AAT10: 1600 to 3400 degrees C) to the winter wheat zone (AAT10: 3400 to 4500 degrees C). Changes in thermal conditions had large influences on cultivated land area and cropping systems. The areas of cultivated land have increased in regions with increasing AAT10, and the cropping rotation index has increased since the late 1980s. Single cropping was replaced by 3 crops in 2 years in many regions, and areas of winter wheat cultivation were shifted northward in some areas, such as in the eastern Inner Mongolia Autonomous Region and in western Liaoning and Jilin Provinces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant traits and individual plant biomass allocation of 57 perennial herbaceous species, belonging to three common functional groups (forbs, grasses and sedges) at subalpine (3700 m ASL), alpine (4300 m ASL) and subnival (>= 5000 m ASL) sites were examined to test the hypothesis that at high altitudes, plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts, especially storage organs, as altitude increases, so as to geminate and resist environmental stress. However, results indicate that some divergence in biomass allocation exists among organs. With increasing altitude, the mean fractions of total biomass allocated to aboveground parts decreased. The mean fractions of total biomass allocation to storage organs at the subalpine site (7%+/- 2% S.E.) were distinct from those at the alpine (23%+/- 6%) and subnival (21%+/- 6%) sites, while the proportions of green leaves at all altitudes remained almost constant. At 4300 m and 5000 m, the mean fractions of flower stems decreased by 45% and 41%, respectively, while fine roots increased by 86% and 102%, respectively. Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation, while sedges showed opposite trends. For all three functional groups, leaf area ratio and leaf area root mass ratio decreased, while fine root biomass increased at higher altitudes. Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots, while the proportion of leaves remained stable. It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots. In contrast to forbs and grasses that had high mycorrhizal infection, sedges had higher single leaf area and more root fraction, especially fine roots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We obtained four phases of land cover spatial data sets by interpreting MSS images of middle and late 1970s and three phases of TM images of late 1980s, 2004 and 2008 based on field investigation in Three Rivers' Source Region. We analyzed the temporal and spatial characteristics of land cover and macro ecological changes in Three Rivers' Source Region in Qinghai-Tibet plateau since middle and late 1970s. Indicated by land cover condition index change rate and land cover change index, land cover and macroscopical ecological condition degenerated (7090 period Zc -0.63, LCCI -0.58)-obviously degenerated (9004 period, Zc -0.94, LCCI -1.76)-slightly meliorated (0408 period, Zc 0.06, LCCI 0.33). This course was jointly driven by climate change, grassland stocking pressure and implement of ecological construction project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural changes of genomic DNA upon interaction with small molecules have been studied in real time using dual-polarization interferometry (DPI). Native or thermally denatured DNA was immobilized on the silicon oxynitride surface via a preadsorbed poly(ethylenimine) (PEI) layer. The mass loading was similar for both types of DNA, however, native DNA formed a looser and thicker layer due to its rigidity, unlike the more flexible denatured DNA, which mixed with PEI to form a denser and thinner layer. Ethidium bromide (EtBr), a classical intercalator, induced the large thickness decrease and density increase of native DNA (double-stranded), but a slight increase in both the thickness and density of denatured DNA (partial single-stranded).