1000 resultados para Carbon, organic, total per volume


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geochemical studies of Cretaceous strata rich in organic carbon (OC) from Deep Sea Drilling Project (DSDP) sites and several land sections reveal several consistent relationships among amount of OC, hydrocarbon generating potential of kerogen (measured by pyrolysis as the hydrogen index, HI), and the isotopic composition of the OC. First, there is a positive correlation between HI and OC in strata that contain more than about 1% OC. Second, percent OC and HI often are negatively correlated with carbon isotopic composition (delta13C) of kerogen. The relationship between HI and OC indicates that as the amount of organic matter increases, this organic matter tends to be more lipid rich reflecting the marine source of the organic matter. Cretaceous samples that contain predominantly marine organic matter tend to be isotopically lighter than those that contain predominantly terrestrial organic matter. Average delta13C values for organic matter from most Cretaceous sites are between -26 and -28 per mil, and values heavier than about -25 per mil occur at very few sites. Most of the delta13C values of Miocene to Holocene OC-rich strata and modern marine plankton are between -16 to -23 per mil. Values of delta13C of modern terrestrial organic matter are mostly between -23 and -33 per mil. The depletion of terrestial OC in 13C relative to marine planktonic OC is the basis for numerous statements in the literature that isotopically light Cretaceous organic matter is of terrestrial origin, even though other organic geochemical and(or) optical indicators show that the organic matter is mainly of marine origin. A difference of about 5 per mil in delta13C between modern and Cretaceous OC-rich marine strata suggests either that Cretaceous marine planktonic organic matter had the same isotopic signature as modern marine plankton and that signature has been changed by diagenesis, or that OC derived from Cretaceous marine plankton was isotopically lighter by about 5 per mil relative to modern plankton OC. Diagenesis does not produce a significant shift in delta13C in Miocene to Holocene sediments, and therefore probably did not produce the isotopically light Cretaceous OC. This means that Cretaceous marine plankton must have had delta13C values that were about 5 per mil lighter than modern marine plankton, and at least several per mil lighter than Cretaceous terrestrial vegetation. The reason for these lighter values, however, is not obvious. It has been proposed that concentrations of CO2 were higher during the middle Cretaceous, and this more available CO2 may be responsible for the lighter delta13C values of Cretaceous marine organic matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The book is devoted to fundamental problems of organic geochemistry of ocean sediments. It is based on materials of organic matter and gas studies in cores from DSDP Legs 50 and 64. Experimental results obtained in the Laboratory of Carbon Geochemistry (V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow) take the main part of the book. Evolution of organic matter in specific environment of deep ocean sediments, sources of organic matter in the ocean and methods of their identification based on isotopic analysis and other methods are under discussion. Gas geochemistry in normal conditions of diagenesis, and in conditions under intense heating is studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amount, type, and thermal maturation of organic matter in sediments from two DSDP holes in the South Atlantic (Leg 72) were investigated. Isolated kerogens were studied by microscopy, and nonaromatic hydrocarbons were characterized by capillary gas chromatography. Organic carbon values are low in all samples and range between 0.05 and 0.21% in Hole 515B (Brazil Basin) and only between 0.02 and 0.10% in Hole 516F (Rio Grande Rise). The organic matter is predominantly terrigenous, mixed with some unicellular marine algae; it is severely oxidized in most samples. N-alkane distributions are usually dominated by long-chain wax alkanes with odd-over-even carbon number predominance; when the marine organic matter is relatively more abundant, however, significant amounts of n-alkanes are centered upon n-C17. The organic matter is not mature enough in any sample to generate appreciable amounts of hydrocarbons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-matter-rich Upper Cretaceous claystones from DSDP Hole 603B, lower continental rise, had organic carbon values ranging from 1.7 to 13.7%, C/N ratios from 32 to 72, and d13C values from -23.5 to -27.1 per mil. Lipid class maxima for the unbound alkanes (C29 and C31), unbound fatty acids (C28 and C30), and bound fatty acids (C24, C26 , and C28) and the strong odd-carbon and even-carbon preferences, respectively, suggested that the organic matter in these sediments was partially the result of input from continental plant waxes. Transport of the organic-matter-rich sediments to the deep sea from the near-shore environment probably resulted from turbiditic flow under oxygen-stressed conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site 722 provides high resolution records of percent CaCO3, magnetic susceptibility, d18O, organic carbon, and coarse fraction for the past 3.4 m.y. from the crest of the Owen Ridge, northwestern Arabian Sea. Within this time interval, most of the carbonate percent variations can be attributed to terrigenous dilution and do not reflect changes in the carbonate system. From the late Pliocene to Present, the average rate of calcium carbonate accumulation increases from 1 to 3 g/cm**2/k.y. and the average accumulation of organic carbon decreases from 75 to 30 mg/cm**2/k.y. The carbonate component is more dissolved in the older interval. The long-term variations in carbonate accumulation may reflect a greater input of organic matter in the late Pliocene, which decomposes to produce CO2 and dissolve carbonate. Magnetic susceptibility and % noncarbonate (100 - CaCO3%) reflect changes in the amount of the lithogenic component in the sediments. The period of variation of lithogenic material is the same period as the original forcing of the regional summer monsoon, however, the timing matches global aridity patterns and global ice volume (sea level) changes. This preliminary analysis suggests that the high frequency variation of lithogenic material persists for at least the last 3.4 m.y. Within the last million years, calcium carbonate accumulation has a large amplitude signal that covaries with major changes in ice volume. Both calcium carbonate and noncarbonate (mostly terrigenous) accumulation are greatest during glacial stages. Interglacial intervals are characterized by low mass accumulation rates, increased foraminifer fragmentation, and increased opal concentration. The accumulation of organic carbon matches the high frequency changes in sedimentation rates. We attribute this high correlation to enhanced preservation of organic carbon by increased sedimentation rate. Of the three major biological components studied, only opal exhibits the variations expected for a biological productivity system forced by monsoonal upwelling driven by changes in northern hemisphere summer radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic petrological and geochemical analyses were performed on samples cored on Broken Ridge and Ninetyeast Ridge in the Central Indian Ocean during Leg 121. Organic carbon (Corg) contents are less than 1% in each individual sample and average Corg values calculated for larger stratigraphic units are less than 0.2%. Generally, there is more organic matter in Cretaceous sediments than in Tertiary. In the Cretaceous, the bulk of the organic matter consists of terrigenous debris, but a significant contribution of marine-derived organic matter was found in some samples, especially in the early Maestrichtian on Broken Ridge (Site 754). The youngest Pliocene-Pleistocene sediments at Site 758 (northern part of Ninetyeast Ridge) contain a significant amount of clastic material transported to the site by the (distal) Bengal Fan. In these sediments, Corg contents of up to 0.9% were measured and are due to the inflow of terrigenous organic debris. Corg values are positively correlated with bulk sediment accumulation rates (i.e., sediments contain more organic matter at times of faster deposition). The size of terrigenous organic particles is generally small in all sediments. The extremely small number of particles in the Cretaceous sediments at Site 758 and their smaller grain size, compared to the Cretaceous sediments on Broken Ridge, indicate that Cretaceous surface water paleocurrents flowed from southeast to northwest in the Proto-Indian Ocean. In the central Indian Ocean, sediments deposited above the carbonate compensation depth consist of nannofossil and foraminiferal oozes. In contrast to Corg values, calcite contents in the sediments are negatively correlated with bulk sediment accumulation rates (i.e., carbonate oozes were deposited only during times of extremely slow sedimentation). Therefore, older sediments deposited in the young and still narrow Indian Ocean accumulated faster and are less carbonate-rich than Neogene sediments, although carbonate accumulation rates were higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was made of isotopic composition of carbon in lipids found in three samples of separate particulates and in eight bottom sediment samples collected in a from the Simushir Island towards the open Pacific Ocean. Average d13C of lipids from particulates was 2.3 per mil lower than one of sediments. Humic acids from sediments are the most isotopically heavy fraction (d13C = -21.2 per mil). Isotopic composition of carbon in lipids depended on their total content in samples and on composition of sediments. Formation of isotopically heavy lipids in the surface layer of sediments may be associated with biogeochemical resynthesis of humic acids.