983 resultados para Callista Roy
Resumo:
In this article, theoretical and the experimental studies are reported on the adaptive control of vibration transmission in a strut system subjected to a longitudinal pulse train excitation. In the control scheme, a magneto-strictive actuator is employed at the downstream transmission point in the secondary path. The actuator dynamics is taken into account. The system boundary parameters are first estimated off-line, and later employed to simulate the system dynamics. A Delayed-X Filtered-E spectral algorithm is proposed and implemented in real time. The underlying mechanics based filter construction allows for the time varying system dynamics to be taken into account. This work should be of interest for active control of vibration and noise transmission in helicopter gearbox support struts and other systems.
Resumo:
The present paper develops a family of explicit algorithms for rotational dynamics and presents their comparison with several existing methods. For rotational motion the configuration space is a non-linear manifold, not a Euclidean vector space. As a consequence the rotation vector and its time derivatives correspond to different tangent spaces of rotation manifold at different time instants. This renders the usual integration algorithms for Euclidean space inapplicable for rotation. In the present algorithms this problem is circumvented by relating the equation of motion to a particular tangent space. It has been accomplished with the help of already existing relation between rotation increments which belongs to two different tangent spaces. The suggested method could in principle make any integration algorithm on Euclidean space, applicable to rotation. However, the present paper is restricted only within explicit Runge-Kutta enabled to handle rotation. The algorithms developed here are explicit and hence computationally cheaper than implicit methods. Moreover, they appear to have much higher local accuracy and hence accurate in predicting any constants of motion for reasonably longer time. The numerical results for solutions as well as constants of motion, indicate superior performance by most of our algorithms, when compared to some of the currently known algorithms, namely ALGO-C1, STW, LIEMID[EA], MCG, SUBCYC-M.
Resumo:
We recast the reconstruction problem of diffuse optical tomography (DOT) in a pseudo-dynamical framework and develop a method to recover the optical parameters using particle filters, i.e., stochastic filters based on Monte Carlo simulations. In particular, we have implemented two such filters, viz., the bootstrap (BS) filter and the Gaussian-sum (GS) filter and employed them to recover optical absorption coefficient distribution from both numerically simulated and experimentally generated photon fluence data. Using either indicator functions or compactly supported continuous kernels to represent the unknown property distribution within the inhomogeneous inclusions, we have drastically reduced the number of parameters to be recovered and thus brought the overall computation time to within reasonable limits. Even though the GS filter outperformed the BS filter in terms of accuracy of reconstruction, both gave fairly accurate recovery of the height, radius, and location of the inclusions. Since the present filtering algorithms do not use derivatives, we could demonstrate accurate contrast recovery even in the middle of the object where the usual deterministic algorithms perform poorly owing to the poor sensitivity of measurement of the parameters. Consistent with the fact that the DOT recovery, being ill posed, admits multiple solutions, both the filters gave solutions that were verified to be admissible by the closeness of the data computed through them to the data used in the filtering step (either numerically simulated or experimentally generated). (C) 2011 Optical Society of America
Resumo:
The literature on pricing implicitly assumes an "infinite data" model, in which sources can sustain any data rate indefinitely. We assume a more realistic "finite data" model, in which sources occasionally run out of data; this leads to variable user data rates. Further, we assume that users have contracts with the service provider, specifying the rates at which they can inject traffic into the network. Our objective is to study how prices can be set such that a single link can be shared efficiently and fairly among users in a dynamically changing scenario where a subset of users occasionally has little data to send. User preferences are modelled by concave increasing utility functions. Further, we introduce two additional elements: a convex increasing disutility function and a convex increasing multiplicative congestion-penally function. The disutility function takes the shortfall (contracted rate minus present rate) as its argument, and essentially encourages users to send traffic at their contracted rates, while the congestion-penalty function discourages heavy users from sending excess data when the link is congested. We obtain simple necessary and sufficient conditions on prices for fair and efficient link sharing; moreover, we show that a single price for all users achieves this. We illustrate the ideas using a simple experiment.
Resumo:
Binary mixtures have strong influence on activities of polymers and biopolymers even at low cosolvent concentration. Among the several aqueous binary mixtures studied, water-DMSO especially stands out for its unusual behavior at certain specific concentrations of DMSO. In the present work, we study the effect of water-DMSO binary mixture on polymers and biopolymers by taking a simple linear hydrocarbon chain of intermediate length (n = 30) and the protein lysozyme, respectively. We find that at a mole fraction of 0.05 of DMSO (x(DMSO) = 0.05) in aqueous solution, the hydrocarbon chain adopts the collapsed conformation as the most stable and rigid state. In this case of 0.05 mole fraction of DMSO in bulk, the DMSO concentration in the first hydration layer around the polymer is found to be as large as 17%. Formation of such hydrophobic environment around the polymer is the reason for the collapsed state gaining so much stability. Interestingly, similar quench of conformational fluctuation is also observed for the protein investigated. It is observed that in the case of alkane polymer chains, long wavelength fluctuation gets easily quenched, the polymer being purely hydrophobic. However, in case of the protein, quench of fluctuation is prominent only at the hydrophobic surface, and quench of long wavelength fluctuation becomes insignificant for the full protein. As protein contains both hydrophobic and hydrophilic moieties, the extent of quench of conformational fluctuation with respect to that in pure water is almost half for the biopolymer complex (16.83%) than the same for pure hydrophobic polymer chain (32.43%).
Resumo:
The literature on pricing implicitly assumes an "infinite data" model, in which sources can sustain any data rate indefinitely. We assume a more realistic "finite data" model, in which sources occasionally run out of data. Further, we assume that users have contracts with the service provider, specifying the rates at which they can inject traffic into the network. Our objective is to study how prices can be set such that a single link can be shared efficiently and fairly among users in a dynamically changing scenario where a subset of users occasionally has little data to send. We obtain simple necessary and sufficient conditions on prices such that efficient and fair link sharing is possible. We illustrate the ideas using a simple example