1000 resultados para Calcidiscus leptoporus flux


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annual radiolarian flux (1954-1986) extrapolated from varved Santa Barbara Basin sediments was compared to instrumental data to examine the effect of interannual climate variability. Paleo-reconstructions over large geographic areas or 10^3 years and longer typically rely on changes in species composition to signal environment or climate shifts. In the relatively short period studied, climate fluctuations were insufficient to significantly alter the assemblage, but there was considerable variability in the total flux of radiolarians. This variability, greatest on 5- to 25-year time scales, appears to be linked to regional climate variability. Total flux correlates to regional California sea surface temperature and the composite of sea level pressure over the Northern Hemisphere for years of high radiolarian flux resembles positive PNA circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High temperature superconductors, such as melt-processed YBCO bulks, have great advantages on trapping strong magnetic fields in liquid nitrogen. To enable them to function well, there are some traditional ways of magnetizing them, in which the YBCO bulks are magnetized instantly under a very strong source of magnetic field. These ways would consume great amounts of power to make the superconductors trap as much field as possible. Thermally Actuated Magnetization (TAM) Flux pump has been proved a perfect substitution for these expensive methods by using a relatively small magnet as the source. In this way, the field is developed gradually over many pulses. Unlike conventional flux pumping ways, the TAM does not drive the superconductor normal during the process of magnetization. In former experiments for the flux pump, some fundamental tests were done. In this paper, the experiment system is advanced to a new level with better temperature control to the thermal waves moving in the Gadolinium and with less air gap for the flux lines sweeping through the superconductor. This experiment system F leads to a stronger accumulation of the magnetic field trapped in the YBCO bulk. We also tried different ways of sending the thermal waves and found out that the pumping effect is closely related to the power of the heaters and the on and off time. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field angle dependent critical current, magneto-optical microscopy and high resolution electron microscopy studies have been performed on YBa2Cu3O7-delta thin films grown on miscut substrates. High resolution electron microscopy images show that the films studied exhibited clean epitaxial growth with a low density of antiphase boundaries and stacking faults. Any antiphase boundaries (APBs) formed near the film substrate interface rapidly healed rather than extending through the thickness of the film. Unlike vicinal films grown on annealed substrates, which contain a high density of antiphase boundaries, magneto-optical imaging showed no filamentary flux penetration in the films studied. The flux penetration is, however, asymmetric. This is associated with intrinsic pinning of flux strings by the tilted a-b planes and the dependence of the pinning force on the angle between the local field and the a-b planes. Field angle dependent critical current measurements exhibited the striking vortex channeling effect previously reported in vicinal films. By combining the results of three complementary characterization techniques it is shown that extended APB free films exhibit markedly different critical current behavior compared to APB rich films. This is attributed to the role of APB sites as strong pinning centers for Josephson string vortices between the a-b planes. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents the vector model of the Brushless Doubly-Fed Machine (BDFM) in the rotor flux oriented reference frame. The rotor flux oriented reference frame is well known in the standard AC machines analysis and control. Similar benefits can be sought by employing this method for the BDFM The vector model is implemented in MATLAB/SIVIULINK to simulate the BDFM dynamic performance under different operating conditions. The predictions from the vector model are compared to those from the coupled circuit model in simulation. The results are shown for the cascade mode of operation. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superconductors are known for the ability to trap magnetic field. A thermally actuated magnetization (TAM) flux pump is a system that utilizes the thermal material to generate multiple small magnetic pulses resulting in a high magnetization accumulated in the superconductor. Ferrites are a good thermal material candidate for the future TAM flux pumps because the relative permeability of ferrite changes significantly with temperature, particularly around the Curie temperature. Several soft ferrites have been specially synthesized to reduce the cost and improve the efficiency of the TAM flux pump. Various ferrite compositions have been tested under a temperature variation ranging from 77K to 300K. The experimental results of the synthesized soft ferrites-Cu 0.3 Zn 0.7Ti 0.04Fe 1.96O 4, including the Curie temperature, magnetic relative permeability and the volume magnetization (emu/cm3), are presented in this paper. The results are compared with original thermal material, gadolinium, used in the TAM flux pump system.-Cu 0.3 Zn 0.7Ti 0.04 Fe 1.96O 4 holds superior characteristics and is believed to be a suitable material for next generation TAM flux pump. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbine design engineers have to ensure that film cooling can provide sufficient protection to turbine blades from the hot mainstream gas, while keeping the losses low. Film cooling hole design parameters include inclination angle (α), compound angle (β ), hole inlet geometry and hole exit geometry. The influence of these parameters on aerodynamic loss and net heat flux reduction is investigated, with loss being the primary focus. Low-speed flat plate experiments have been conducted at momentum flux ratios of IR = 0.16, 0.64 and 1.44. The film cooling aerodynamic mixing loss, generated by the mixing of mainstream and coolant, can be quantified using a three-dimensional analytical model that has been previously reported by the authors. The model suggests that for the same flow conditions, the aerodynamic mixing loss is the same for holes with different α and β but with the same angle between the mainstream and coolant flow directions (angle κ). This relationship is assessed through experiments by testing two sets of cylindrical holes with different α and β : one set with κ = 35°, another set with κ = 60°. The data confirm the stated relationship between α, β, κ and the aerodynamic mixing loss. The results show that the designer should minimise κ to obtain the lowest loss, but maximise β to achieve the best heat transfer performance. A suggestion on improving the loss model is also given. Five different hole geometries (α =35.0°, β =0°) were also tested: cylindrical hole, trenched hole, fan-shaped hole, D-Fan and SD-Fan. The D-Fan and the SD-Fan have similar hole exits to the fan-shaped hole but their hole inlets are laterally expanded. The external mixing loss and the loss generated inside the hole are compared. It was found that the D-Fan and the SD-Fan have the lowest loss. This is attributed to their laterally expanded hole inlets, which lead to significant reduction in the loss generated inside the holes. As a result, the loss of these geometries is ≈ 50 % of the loss of the fan-shaped hole at IR = 0.64 and 1.44. Copyright © 2011 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the behaviour of bulk superconductors when subjected to a varying magnetic field. A magnetic model is described together with experimental results which explain and describe the behaviour of superconducting bulks when subjected to varying magnetic fields. We demonstrate how the behaviour is dependent on the magnitude and period of the perturbations in the fields. The model which we use has been implemented using the Comsol™pde solver. It is a fully integrated model which uses a variable heat source to regulate the magnetic circuit and thereby to achieve flux pumping. Comsol™is used for post solution visualization and the model is presented alongside experimental results which support and confirm the conclusions from the model. © 2012 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the use of magnetic materials to divert flux in high-temperature superconductor superconducting coils and reduce transport ac loss is investigated. This particular technique is preferred over other techniques, such as striation, Roebel transposition, and twisted wires because it does not require modification to the conductor itself, which can be detrimental to the properties of the superconductor. The technique can also be implemented for existing coils. The analysis is carried out using a coil model based on the H formulation and implemented in comsol multiphysics. Both weakly and strongly magnetic materials are investigated, and it is shown that the use of such materials can divert flux and achieve a reduction in transport ac loss, which, in some cases, is quite significant. This analysis acts to provide a foundation for further optimization and experimental work in the future. © 2011 IEEE.