1000 resultados para CW-Complexes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoxidation of styrene was catalyzed by some nickel(II) complexes, with NaOCl as the oxygen donor. The catalyst Ni(PA)(2). 2H(2)O has been found to be stable for the epoxidation of styrene. Some additives were introduced in the reaction to improve the "micro-environment" of the catalyst. Radical trap had little influence on styrene epoxidation. It was interesting to find that phase-transfer agent had negative influence on epoxidation in this biphase reaction. A possible mechanism of styrene epoxidation catalyzed by Ni(PA)(2). 2H(2)O has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three chiral Mn(salen) complexes were immobilized into different mesoporous material via phenoxy group by a simplified method and they show high activity and enantioselectivity for asymmetric epoxidation of various substituted unfunctional olefins. The heterogeneous Mn(salen) catalysts show comparable ee values for asymmetric epoxidation of styrene and 6-cyano-2,2-dimethylchromene and much higher ee values for epoxidation of a-methylstyrene (heterogeneous 79.7% ee versus homogeneous 26.4% ee) and cis-beta-methylstyrene (heterogeneous 94.9% ee versus homogeneous 25.3% ee for cis-epoxide) than the homogeneous catalysts. These heterogeneous catalysts also remarkably alter the cis/trans ratio of epoxides for asymmetric epoxidation of cis-beta-methylstyrene (heterogeneous 21 versus homogeneous 0.38). The axial tether group does not make a big effect on ee values and the increase in ee value and change in cis/trans ratio are mainly attributed to the axial immobilization mode and the support effect of heterogeneous catalysts. The catalysts keep constant ee values for the recycle tests of eight times for asymmetric epoxidation of a-methylstyrene. And several possibilities were proposed to elucidate the difference in ee values of heterogeneous catalysts from homogeneous catalysts. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Michael addition of substituted pyrazoles 2 to 1-alkynyl Fischer carbene complexes (CO)(5)M=C(OEt)(CdropCPh) (1) (a, M = Cr and b M = W) afforded (pyrazolyl)alkenyl Fischer carbene complexes (CO)(5)M=C(OEt)(CH=C(R(1)R(2)R(3)pz)Ph) (R(1)R(2)R(3)pz = pyrazolyl) 3 (M = Cr) and 4 (M = W), respectively, with an exclusive (E)-configuration in mild to excellent yields. The reaction of la and 3,5-dimethylpyrazole (2b) was monitored to demonstrate the formation and decomposition of complex 3b by H-1 NMR measurements in CDCl3 at 23degreesC. Complexes 3 and 4 were characterized with H-1, C-13{H-1} NMR, IR spectroscopies and elemental analysis. When the substituted pyrazoles were 3-methylpyrazole (2a) and 3,5-di-tert-butylpyrazole (2d), molecular structures of the corresponding (pyrazolyl)alkenyl Fischer carbene complexes 3a and 4d were characterized by X-ray crystallographic study. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different kinds of sensors have been developed by using the same kind of vapochromic complexes. The vapochromic materials [Au2Ag2(C6F5)(4)L-2](n) have different colours depending on the ligand L. These materials change, reversibly, their optical properties, colour and fluorescence, in the presence of the vapours of volatile organic compounds (VOCs). For practical applications, two different ways of fixing the vapochromic material to the optical fibre have been used: the sol-gel technique and the electrostatic self-assembly method (ESA). With the first technique the sensors can even be used to detect VOCs in aqueous solutions, and using the second method it has been possible to develop nanosensors.