1000 resultados para CNPQ::CIENCIAS BIOLOGICAS::BOTANICA::FISIOLOGIA VEGETAL::ECOFISIOLOGIA VEGETAL
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The identification of genotypes for drought tolerance has a great importance in breeding programs. The aim of this study was to characterize genotypes of beans in response to drought tolerance in different reproductive stages through physiologic, agronomic and molecular analysis. The experiment was conducted in greenhouse, using a randomized block design with four replicates; 10 cultivars: ANFC 9, ANFP 110, BRS Esplendor, BRSMG Realce, IPR Siriri, IPR Tangará, IPR Tuiuiu, IPR Uirapuru, IAC Imperador and IAC Milênio under two conditions of irrigation: plants irrigated during their entire life cycle, and plants under irrigation suppression in the reproductive stage (R7) until 16% of field capacity, when the irrigation was restored. In the last four days of stress, the gas exchanges were analyzed, and in the last day of stress was analyzed the percentage of closed stomata in the abaxial surface of the leaves, collected in different times of the day (9h, 12h, 15h and 18h). Additionally, plant samples were collected for the following analysis: fresh and dry mass of leaves, stems and legumes, and proline content in leaves and roots. The plants were harvested at the physiological maturity and the yield components and grain yield were determined. In addition, in order to identify polymorphisms in the sequences of promoters and genes related to drought, seven pairs of primers were tested on the group of genotypes. The drought susceptibility indexes (ISS) ranged from 0.65 to 1.10 in the group of genotypes, which the lowest values observed were for IAC Imperador (0.65) and BRS Esplendor (0.87), indicating the ability of these two genotypes to maintain grain yield under water stress condition. All genotypes showed reduction in yield components under water stress. IAC Imperador (43.4%) and BRS Esplendor (60.6%) had the lowest reductions in productivity and kept about 50% of the stomata closed during all the different times evaluated at last day of irrigation suppression. IAC Imperador showed greater water use efficiency and CO2 assimilation rate under drought stress. IPR Tuiuiú, IPR Tangará and IAC Imperador had the highest proline concentrations in the roots. Under water stress condition, there was a strong positive correlation (0.696) between the percentage of stomata closed with the number of grains per plant (0.696) and the fresh mass of leaves (0.731), the maximum percentage of stomata closed 73.71% in water stress. The accumulation of proline in the root was the character that most contributed to the divergence between the genotypes under water deficit, but not always the genotypes that have accumulated more proline were the most tolerant. The polymorphisms in DNA of coding and promoting sequences of transcription factors studied in this experiment did not discriminate tolerant genotypes from the sensitive ones to water stress.
Resumo:
The seasonal climate drivers of the carbon cy- cle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combina- tion of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measure- ments and 35 litter productivity measurements), their asso- ciated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonal- ity in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rain- fall is < 2000 mm yr-1 (water-limited forests) and to radia- tion otherwise (light-limited forests). On the other hand, in- dependent of climate limitations, wood productivity and lit- terfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosyn- thetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest pro- ductivity in a drier climate in water-limited forest, and in cur- rent light-limited forest with future rainfall < 2000 mm yr-1.
Resumo:
Low temperatures negatively impact the metabolism of orange trees, and the extent of damage can be influenced by the rootstock. We evaluated the effects of low nocturnal temperatures on Valencia orange scions grafted on Rangpur lime or Swingle citrumelo rootstocks. We exposed six-month-old plants to night temperatures of 20ºC and 8ºC under controlled conditions. After decreasing the temperature to 8ºC, there were decreases in leaf CO2 assimilation, stomatal conductance, mesophyll conductance and CO2 concentration in the chloroplasts, in plant hydraulic conductivity and in the maximum electron transport rate driven ribulose-1,5-bisphosphate (RuBP) regeneration in plants grafted on both rootstocks. However, the effects of low night temperature were more severe in plants grafted on Rangpur rootstock, which also presented reduction in the maximum rate of RuBP carboxylation and in the maximum quantum efficiency of the PSII. In general, irreversible damage due to night chilling was found in the photosynthetic apparatus of plants grafted on Rangpur lime. Low night temperatures induced similar changes in the antioxidant metabolism, preventing oxidative damage in citrus leaves on both rootstocks. As photosynthesis is linked to plant growth, our findings indicate that the rootstock may improve the performance of citrus trees in environments with low night temperatures, with Swingle rootstock improving the photosynthetic acclimation in leaves of orange plants.
Resumo:
Increasing water scarcity and depleted water productivity in irrigated soils are inducing farmers to adopt improved varieties, such as those with high-capacity tolerance. The use of tolerant varieties of sugarcane might substantially avoid the decline of productivity under water deficit. This research aimed to evaluate the harmful effects of drought on the physiology of two sugarcane varieties (RB867515 and RB962962) during the initial development. Young plants were subjected to irrigation suspension until total stomata closure, and then rewatered. Significant reduction on stomatal conductance, transpiration, and net photosynthesis were observed. RB867515 showed a faster stomatal closure while RB962962 slowed the effects of drought on the gas exchanges parameters with a faster recovering after rewatering. Accumulation of carbohydrates, amino acids, proline, and protein in the leaves and roots of the stressed plants occurred in both varieties, substantially linked to reduction of the leaf water potential. Due to the severity of stress, this accumulation was not enough to maintain the cell turgor pressure, so relative water content was diminished. Water stress affected the contents of chlorophyll (a, b, and total) in both varieties, but not the levels of carotenoids. There was a significant reduction in dry matter under stress. In conclusion, RB962962 variety endured stressed conditions more than RB867515, since it slowed down the damaging effects of drought on the gas exchanges. In addition, RB962962 presented a faster recovery than RB867515, a feature that qualifies it as a variety capable of enduring short periods of drought without major losses in the initial stage of its development.
Resumo:
The aim of the present work was to characterize changes in the protein profile throughout seed development in O. catharinensis, a recalcitrant species, by two-dimensional gel electrophoresis. Protein extraction was undertaken by using a thiourea/urea buffer, followed by a precipitation step with 10% TCA. Comparative analysis during seed development showed that a large number of proteins were exclusively detected in each developmental stage. The cotyledonary stage, which represents the transition phase between embryogenesis and the beginning of metabolism related to maturation, presents the highest number of stage-specific spots. Protein identification, through MS/MS analysis, resulted in the identification of proteins mainly related to oxidative metabolism and storage synthesis. These findings contribute to a better understanding of protein metabolism during seed development in recalcitrant seeds, besides providing information on established markers that could be useful in defining and improving somatic embryogenesis protocols, besides monitoring the development of somatic embryos in this species.
Resumo:
This paper tries to point out the existente of conceptual errors in the learning of photosynthesis. They seem to arise from the same sources as those present in more deeply studied fields, such as mechanics.
Resumo:
This research presents a study investigating the correlation between the environmental-physycal charcateristics of cities and the formation of its micro-climates. The study was conducted in the central area of Fortaleza characterized as a stable and consolidated area, where the city originated and currently faces serious problems in its urban dynamics. The points of measurements were determined by the elaboration and analysis of topography maps, height of buildings, land use, type of surface coating and vegetation, following the methodology of Katzschner (1997). A zoning map was then determined, according to common morphological characteristics of the 12 measurement points, which were based on a set of Romero s (2001) bioclimatic criteria. Air measurements, temperature, humidity, intensity and direction of winds were made in transect form in two different circuits in the study area, with six points of data collection in each area, in three different times: 6:00 am, 1:00pm and 7:00pm, during two periods of the year: August 2008 and March 2009. The results verified the influence of different environmental-physical types in the behavior of the climatic variables that were collected. A verticalização tão condenada em algumas situações se bem equilibrada e controlada pode reduzir as temperaturas do ar através do sombreamento dos espaços urbanos e possibilidade de maior permeabilidade a ventilação natural. The highest average air temperature and lower humidity were recorded at the point I at all times. This situation may have been in result of the high density, poor vegetation and extended paving of the ground. According to the results, it s clear the positive influence vegetation has on easing air temperature. Another indicator observed that areas with a greater variation in building heights tend to present decreased average air temperature. High rise structure, planned in accordance to urban air quality parameters, can reduce air temperatures by the shading of urban spaces and the possibility of greater penetration of natural ventilation
Resumo:
This study intends to establish a relation between environmental degradation, particularly the devastation of the green canopy, and public health. Utilizing a mapping of the trees included in the researched area, each individual tree was analyzed according to its age, taxonomic listing, architecture, shape and size (determined by aesthetic/convenience reasons or deformed by pruning). Initially investigated were the covert reasons lying underneath the constant aggression against trees (which many times seem to contain elements of hatred and contempt) within the urban environment. In addition to that, the aspects concerning environmental modifications and the consequent impact on public health were also assessed. Two main problems promptly emerged as a result of the removal of trees: a) without a canopy to protect the areas, they became subject to winds directly blown from SW Africa and impregnated with aerosol partic les, which are common causes for respiratory disorders and, b) direct UV solar radiation, which causes some types of skin cancers and eye disorders. To reach such results, we studied the origins and formation of UV radiation induced cancers and searched for the UV radiation spectra of action, e.g., usual intensity and quantity reaching clear and shadowed spaces in a certain area and its consequences. In a second instance, we also searched for pertinent data resources in order to confirm the increase of skin cancer cases due to exposure to UV radiation and the relation between the destruction of the green canopy and the above mentioned problems. We believe that a few significant results have been achieved by this study, namely: the relation between a culture based on medieval beliefs and its consequences on the environment; how this culture exploits and deforms nature in pursuit of financial and psychological interests to a point of transforming the landscape into a copy of something devoid of any relation to latitude and altitude; and above all, the indifference concerning the alarming results carried by these modifications
Resumo:
Artemisia vulgaris L..is used in folk medicine and in Traditional Chinese Medicine (TCM). This medicinal plant has been utilized as anticonvulsive, analgesic, antispasmodic effect, rheumatic pains, menstrual dyspepsia, asthenia, epilepsy, hepatitis, fevers, anemia and to expel parasites. In nuclear medicine, blood constituents are labeled with technetium-99m (99mTc) and used as radiopharmaceuticals (radiobiocomplexes). Authors have been described that synthetic and/or natural drugs could modify the labeling of blood constituents with 99mTc. The aim of this work was to evaluate the effects of an aqueous extract of Artemisia vulgaris L. on the labeling of blood constituents with 99mTc. Blood samples withdrawn of Wistar rats were incubated with Artemisia vulgaris L, stannous chloride and 99mTc, as pertechnetate ion. Aliquots of plasma (P) and blood cells (BC) were isolated. Aliquots of P and BC were also precipitated with trichloroacetic acid and soluble (SF) and insoluble (IF) fractions were separated. The radioactivity in each fraction was counted and the percentages of radioactivity (%ATI) were calculated. Artemisia vulgaris L. extract decreased significantly (p<0.05) the %ATI on BC and on IF-BC. The analysis of the results indicates that the extract could have substances that could interfere on the transport of stannous through the erythrocyte membrane altering the labeling of blood cells with 99mTc. Working in this study was a multidisciplinary group, with Phisical therapists, Biomedicals, Physicals, Pharmacists, Biologists, Statistics and Physicians.
Resumo:
Sulfated polysaccharides (SP) are widely distributed in animals and seaweeds tissues. These polymers have been studied in light of their important pharmacological activities, such as anticoagulant, antioxidant, antitumoral, anti-inflammatory, and antiviral properties. On other hand, SP potential to synthesize biomaterials like as nanoparticules has not yet been explored. In addition, to date, SP have only been found in six plants and all inhabit saline environments. However, the SP pharmacological plant activities have not been carrying out. Furthermore, there are no reports of SP in freshwater plants. Thus, do SP from marine plants show pharmacological activity? Do freshwater plants actually synthesize SP? Is it possible to synthesize nanoparticles using SP from seaweed? In order to understand this question, this Thesis was divided into tree chapters. In the first chapter a sulfated polysaccharide (SPSG) was successfully isolated from marine plant Halodule wrightii. The data presented here showed that the SPSG is a 11 kDa sulfated heterogalactan contains glucose and xylose. Several assays suggested that the SPSG possessed remarkable antioxidant properties in different in vitro assays and an outstanding anticoagulant activity 2.5-fold higher than that of heparin Clexane® in the aPTT test; in the next chapter using different tools such as chemical and histological analyses, energy-dispersive X-ray analysis (EDXA), gel electrophoresis and infra-red spectroscopy we confirm the presence of sulfated polysaccharides in freshwater plants for the first time. Moreover, we also demonstrate that SP extracted from E. crassipes root has potential as an anticoagulant compound; and in last chapter a fucan, a sulfated polysaccharide, extracted from the brown seaweed was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution for hydrophobic chains of 1H NMR was approximately 93%. SNFfuc-TBa125 in aqueous media had a mean diameter of 123 nm and zeta potential of -38.3 ± 0.74 mV, measured bydynamic light scattering. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0 43.7% at SNFuc concentrations of 0.05 0.5 mg/ mL and RAEC non-tumor cell line proliferation displayed inhibition of 8.0 22.0%. On the other hand, nanogel improved CHO and RAW non-tumor cell line proliferation in the same concentration range. Flow cytometric analysis revealed that this fucan nanogel inhibited 786 cell proliferation through caspase and caspaseindependent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle
Resumo:
Artemisia vulgaris (AV) is an antihelmintic and antimalarial drug; Aloe vera(babosa) acts as antidiabetic, laxative and anti-inflammatory; Benznidazole (BZ) is a trypanocidal of Trypanosoma cruzi (TC). Technetium-99m (99mTc) has been used in nuclear medicine to obtain diagnostic images. This study evaluated the plant effects in TC parasitemia and in the biodistribution of 99mTc in mice. Twenty mice were infected by TC. At the peak of parasitemia, 5 mice received babosa; 5 received AV and 5 received BZ. The parasitemia was determined in 0, 2, 4 and 6 h of drugs administration. Five infected mice without drugs, 5 mice without TC and the group treated with AV, received 99mTc. The radioactivity was calculated. Infected mice that received babosa reduced significantly (p<0.05) the parasitemia. The percentage of activity (%ATI) decreased significantly in the AV group. These results indicate that babosa possibly is an anti-TC drug and AV reduces the %ATI probably due to its biological effects
Resumo:
The increasing in the consumption of plant medicine by parts of the population generated a bigger need for studies. Drug substitutions, changes and adulterations at the production techniques are common places at plant-originated drugs trade, leading governmental departments of drug control round the world to adopt many analytical practices to medicinal plants. However, agronomic and technological issues cause characteristics and chemical composition variation at the drug, problem to be solved by the subject researchers. The present work aims to obtain a spray dried extract from a extractive solution obtained from Psidium guajava L. leaves based in book references that stress the intermediate dosage forms advantages. It also tries to validate useful methodologies for the quality control for both raw material and its derivates. Using eight sets of the spray dried extract (with Eudragit®, Aerosil ® e Avicel PH101 ® as drying adjuvants), the study proposes analytical methods using techniques commonly performed to plant medicines and its intermediate forms. As results, a viable spray-dried extract was obtained from a standartized extract solution. Among the studied adjuvants, the combination Aerosil ® with Eudragit ® showed the drying outcome, rheology, humidity and tannin content values that best fitted the demands of the Brazilian Pharmacopaea