982 resultados para CARA utility function
Resumo:
Postoperative care of major neurosurgical procedures is aimed at the prevention, detection and treatment of secondary brain injury. This consists of a series of pathological events (i.e. brain edema and intracranial hypertension, cerebral hypoxia/ischemia, brain energy dysfunction, non-convulsive seizures) that occur early after the initial insult and surgical intervention and may add further burden to primary brain injury and thus impact functional recovery. Management of secondary brain injury requires specialized neuroscience intensive care units (ICU) and continuous advanced monitoring of brain physiology. Monitoring of intracranial pressure (ICP) is a mainstay of care and is recommended by international guidelines. However, ICP monitoring alone may be insufficient to detect all episodes of secondary brain insults. Additional invasive (i.e. brain tissue PO2, cerebral microdialysis, regional cerebral blood flow) and non-invasive (i.e. transcranial doppler, near-infrared spectroscopy, EEG) brain monitoring devices might complement ICP monitoring and help clinicians to target therapeutic interventions (e.g. management of cerebral perfusion pressure, blood transfusion, glucose control) to patient-specific pathophysiology. Several independent studies demonstrate such multimodal approach may optimize patient care after major neurosurgical procedures. The aim of this review is to evaluate some of the available monitoring systems and summarize recent important data showing the clinical utility of multimodal neuromonitoring for the management of main acute neurosurgical conditions, including traumatic brain injury, subarachnoid hemorrhage and stroke.
Resumo:
Audit report on the Regional Utility Service Systems Commission for the year ended June 30, 2012
Resumo:
The chemokine receptor CCR7 is critical for the recirculation of naive T cells. It is required for T cell entry into secondary lymphoid organs (SLO) and for T cell motility and retention within these organs. How CCR7 activity is regulated during these processes in vivo is poorly understood. Here we show strong modulation of CCR7 surface expression and occupancy by the two CCR7 ligands, both in vitro and in vivo. In contrast to blood, T cells in SLO had most surface CCR7 occupied with CCL19, presumably leading to continuous signaling and cell motility. Both ligands triggered CCR7 internalization in vivo as shown in Ccl19(-/-) and plt/plt mice. Importantly, CCR7 occupancy and down-regulation led to strongly impaired chemotactic responses, an effect reversible by CCR7 resensitization. Therefore, during their recirculation, T cells cycle between states of free CCR7 with high ligand sensitivity in blood and occupied CCR7 associated with continual signaling and reduced ligand sensitivity within SLO. We propose that these two states of CCR7 are important to allow the various functions CCR7 plays in T cell recirculation.
Laparoscopic procurement of kidney grafts from living donors does not impair initial renal function.
Resumo:
Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel CaV2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant CaV2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.