992 resultados para Bone healing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New methods of surface modification of transparent silicone substrate were developed, and a new set of cell culture devices that provide homogeneous substrate strain was designed. Using the new device, effects of cyclic substrate strain on bone marrow mesenchymal stem cells(MSCs) were studied. It was found that cyclic strain influenced proliferation and differentiation of bone marrow MSCs in different ways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Human melanoma frequently colonizes bone marrow (BM) since its earliest stage of systemic dissemination, prior to clinical metastasis occurrence. However, how melanoma cell adhesion and proliferation mechanisms are regulated within bone marrow stromal cell (BMSC) microenvironment remain unclear. Consistent with the prometastatic role of inflammatory and angiogenic factors, several studies have reported elevated levels of cyclooxygenase-2 (COX-2) in melanoma although its pathogenic role in bone marrow melanoma metastasis is unknown. Methods: Herein we analyzed the effect of cyclooxygenase-2 (COX-2) inhibitor celecoxib in a model of generalized BM dissemination of left cardiac ventricle-injected B16 melanoma (B16M) cells into healthy and bacterial endotoxin lipopolysaccharide (LPS)-pretreated mice to induce inflammation. In addition, B16M and human A375 melanoma (A375M) cells were exposed to conditioned media from basal and LPS-treated primary cultured murine and human BMSCs, and the contribution of COX-2 to the adhesion and proliferation of melanoma cells was also studied. Results: Mice given one single intravenous injection of LPS 6 hour prior to cancer cells significantly increased B16M metastasis in BM compared to untreated mice; however, administration of oral celecoxib reduced BM metastasis incidence and volume in healthy mice, and almost completely abrogated LPS-dependent melanoma metastases. In vitro, untreated and LPS-treated murine and human BMSC-conditioned medium (CM) increased VCAM-1-dependent BMSC adherence and proliferation of B16M and A375M cells, respectively, as compared to basal medium-treated melanoma cells. Addition of celecoxib to both B16M and A375M cells abolished adhesion and proliferation increments induced by BMSC-CM. TNF alpha and VEGF secretion increased in the supernatant of LPS-treated BMSCs; however, anti-VEGF neutralizing antibodies added to B16M and A375M cells prior to LPS-treated BMSC-CM resulted in a complete abrogation of both adhesion-and proliferation-stimulating effect of BMSC on melanoma cells. Conversely, recombinant VEGF increased adherence to BMSC and proliferation of both B16M and A375M cells, compared to basal medium-treated cells, while addition of celecoxib neutralized VEGF effects on melanoma. Recombinant TNFa induced B16M production of VEGF via COX-2-dependent mechanism. Moreover, exogenous PGE2 also increased B16M cell adhesion to immobilized recombinant VCAM-1. Conclusions: We demonstrate the contribution of VEGF-induced tumor COX-2 to the regulation of adhesion-and proliferation-stimulating effects of TNFa, from endotoxin-activated bone marrow stromal cells, on VLA-4-expressing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The osteocyte network is recognized as the major mechanical sensor in the bone remodeling process, and osteocyte-osteoblast communication acts as an important mediator in the coordination of bone formation and turnover. In this study, we developed a novel 3D trabecular bone explant co-culture model that allows live osteocytes situated in their native extracellular matrix environment to be interconnected with seeded osteoblasts on the bone surface. Using a low-level medium perfusion system, the viability of in situ osteocytes in bone explants was maintained for up to 4 weeks, and functional gap junction intercellular communication (GJIC) was successfully established between osteocytes and seeded primary osteoblasts. Using this novel co-culture model, the effects of dynamic deformational loading, GJIC, and prostaglandin E-2 (PGE(2)) release on functional bone adaptation were further investigated. The results showed that dynamical deformational loading can significantly increase the PGE(2) release by bone cells, bone formation, and the apparent elastic modulus of bone explants. However, the inhibition of gap junctions or the PGE(2) pathway dramatically attenuated the effects of mechanical loading. This 3D trabecular bone explant co-culture model has great potential to fill in the critical gap in knowledge regarding the role of osteocytes as a mechano-sensor and how osteocytes transmit signals to regulate osteoblasts function and skeletal integrity as reflected in its mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our previous work, bone cell networks with controlled spacing and functional intercellular gap junctions had been successfully established by using microcontact printing and self assembled monolayers technologies [Guo, X. E., E. Takai, X. Jiang, Q. Xu, G. M. Whitesides, J. T. Yardley, C. T. Hung, E. M. Chow, T. Hantschel, and K. D. Costa. Mol. Cell. Biomech. 3:95-107, 2006]. The present study investigated the calcium response and the underlying signaling pathways in patterned bone cell networks exposed to a steady fluid flow. The glass slides with cell networks were separated into eight groups for treatment with specific pharmacological agents that inhibit pathways significant in bone cell calcium signaling. The calcium transients of the network were recorded and quantitatively evaluated with a set of network parameters. The results showed that 18 alpha-GA (gap junction blocker), suramin (ATP inhibitor), and thapsigargin (depleting intracellular calcium stores) significantly reduced the occurrence of multiple calcium peaks, which were visually obvious in the untreated group. The number of responsive peaks also decreased slightly yet significantly when either the COX-2/PGE(2) or the NOS/nitric oxide pathway was disrupted. Different from all other groups, cells treated with 18 alpha-GA maintained a high concentration of intracellular calcium following the first peak. In the absence of calcium in the culture medium, the intracellular calcium concentration decreased slowly with fluid flow without any calcium transients observed. These findings have identified important factors in the flow mediated calcium signaling of bone cells within a patterned network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Diabetic foot ulcers (DFUs) represent a major clinical challenge in the ageing population. To address this problem, rhEGF-loaded Poly-Lactic-co-Glycolic-Acid (PLGA)-Alginate microspheres (MS) were prepared by a modified w/o/w-doubleemulsion/ solvent evaporation method. Different formulations were evaluated with the aim of optimising MSs properties by adding NaCl to the surfactant solution and/or the solvent removal phase and adding alginate as a second polymer. The characterization of the developed MS showed that alginate incorporation increased the encapsulation efficiency (EE) and NaCl besides increasing the EE also became the particle surface smooth and regular. Once the MS were optimised, the target loading of rhEGF was increased to 1% (PLGA-Alginate MS), and particles were sterilised by gamma radiation to provide the correct dosage for in vivo studies. In vitro cell culture assays demonstrated that neither the microencapsulation nor the sterilisation process affected rhEGF bioactivity or rhEGF wound contraction. Finally, the MS were evaluated in vivo for treatment of the full-thickness wound model in diabetised Wistar rats. rhEGF MS treated animals showed a statistically significant decrease of the wound area by days 7 and 11, a complete re-epithelisation by day 11 and an earlier resolution of the inflammatory process. Overall, these findings demonstrate the promising potential of rhEGF-loaded MS (PLGA-Alginate MS) to promote faster and more effective wound healing, and suggest its possible application in DFU treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With continuing advances in CMOS technology, feature sizes of modern Silicon chip-sets have gone down drastically over the past decade. In addition to desktops and laptop processors, a vast majority of these chips are also being deployed in mobile communication devices like smart-phones and tablets, where multiple radio-frequency integrated circuits (RFICs) must be integrated into one device to cater to a wide variety of applications such as Wi-Fi, Bluetooth, NFC, wireless charging, etc. While a small feature size enables higher integration levels leading to billions of transistors co-existing on a single chip, it also makes these Silicon ICs more susceptible to variations. A part of these variations can be attributed to the manufacturing process itself, particularly due to the stringent dimensional tolerances associated with the lithographic steps in modern processes. Additionally, RF or millimeter-wave communication chip-sets are subject to another type of variation caused by dynamic changes in the operating environment. Another bottleneck in the development of high performance RF/mm-wave Silicon ICs is the lack of accurate analog/high-frequency models in nanometer CMOS processes. This can be primarily attributed to the fact that most cutting edge processes are geared towards digital system implementation and as such there is little model-to-hardware correlation at RF frequencies.

All these issues have significantly degraded yield of high performance mm-wave and RF CMOS systems which often require multiple trial-and-error based Silicon validations, thereby incurring additional production costs. This dissertation proposes a low overhead technique which attempts to counter the detrimental effects of these variations, thereby improving both performance and yield of chips post fabrication in a systematic way. The key idea behind this approach is to dynamically sense the performance of the system, identify when a problem has occurred, and then actuate it back to its desired performance level through an intelligent on-chip optimization algorithm. We term this technique as self-healing drawing inspiration from nature's own way of healing the body against adverse environmental effects. To effectively demonstrate the efficacy of self-healing in CMOS systems, several representative examples are designed, fabricated, and measured against a variety of operating conditions.

We demonstrate a high-power mm-wave segmented power mixer array based transmitter architecture that is capable of generating high-speed and non-constant envelope modulations at higher efficiencies compared to existing conventional designs. We then incorporate several sensors and actuators into the design and demonstrate closed-loop healing against a wide variety of non-ideal operating conditions. We also demonstrate fully-integrated self-healing in the context of another mm-wave power amplifier, where measurements were performed across several chips, showing significant improvements in performance as well as reduced variability in the presence of process variations and load impedance mismatch, as well as catastrophic transistor failure. Finally, on the receiver side, a closed-loop self-healing phase synthesis scheme is demonstrated in conjunction with a wide-band voltage controlled oscillator to generate phase shifter local oscillator (LO) signals for a phased array receiver. The system is shown to heal against non-idealities in the LO signal generation and distribution, significantly reducing phase errors across a wide range of frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the universal lack of donor tissue, there has been emerging interest in engineering materials to stimulate living cells to restore the features and functions of injured organs. We are particularly interested in developing materials for corneal use, where the necessity to maintain the tissue’s transparency presents an additional challenge. Every year, there are 1.5 – 2 million new cases of monocular blindness due to irregular healing of corneal injuries, dwarfing the approximately 150,000 corneal transplants performed. The large gap between the need and availability of cornea transplantation motivates us to develop a wound-healing scaffold that can prevent corneal blindness.

To develop such a scaffold, it is necessary to regulate the cells responsible for repairing the damaged cornea, namely myofibroblasts, which are responsible for the disordered and non-refractive index matched scar that leads to corneal blindness. Using in vitro assays, we identified that protein nanofibers of certain orientation can promote cell migration and modulate the myofibroblast phenotype. The nanofibers are also transparent, easy to handle and non-cytotoxic. To adhere the nanofibers to a wound bed, we examined the use of two different in situ forming hydrogels: an artificial extracellular matrix protein (aECM)-based gel and a photo-crosslinkable heparin-based gel. Both hydrogels can be formed within minutes, are transparent upon gelation and are easily tunable.

Using an in vivo mouse model for epithelial defects, we show that our corneal scaffolds (nanofibers together with hydrogel) are well-tolerated (no inflammatory response or turbidity) and support epithelium regrowth. We developed an ex vivo corneal tissue culture model where corneas that are wounded and treated with our scaffold can be cultured while retaining their ability to repair wounds for up to 21 days. Using this technique, we found that the aECM-based treatment induced a more favorable wound response than the heparin-based treatment, prompting us to further examine the efficacy of the aECM-based treatment in vivo using a rabbit model for stromal wounds. Results show that treated corneas have fewer myofibroblasts and immune cells than untreated ones, indicating that our corneal scaffold shows promise in promoting a calmer wound response and preventing corneal haze formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

E2F1 and E2F2 transcription factors have an important role during the regulation of cell cycle. In experiments done with E2F1/E2F2 knockout mice, it has been described that bone-marrow-derived macrophages (BMDM) undergo an early rapid proliferation event related to DNA hyper-replication. As a consequence, DNA damage response (DDR) pathway is triggered and E2F1/E2F2 knockout macrophages enter premature senescence related to G2/M phase arrest. The exact mechanism trough which DNA hyper-replication leads to DDR in absence of E2F1 and E2F2 remains undiscovered. To determine whether the ATR/ATM pathway, the master regulator of G2/M checkpoint, might be the surveillance mechanism in order to regulate uncontrolled proliferation in the DKO model, we monitored and analysis biochemical properties of BMDM cultures in the presence of caffeine, a potent inhibitor of ATM/ATR activity. Our results show that the addition of caffeine abolishes premature senescence in DKO BMDM, stimulates γ-H2AX accumulation and decreases Mcm2 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O propósito do presente trabalho foi investigar a participação da proliferação celular e da expressão dos componentes da matriz extracelular na cascata de eventos do processo de reparo da fratura óssea, empregando as técnicas histológica, imunohistoquímica e morfométrica, em um modelo experimental padronizado para a indução da lesão na tíbia de ratos a partir do método empregado por Yuehuei e Friedman7. É importante padronizar um modelo de indução da fratura, para posterior investigação da participação das células e dos componentes da matriz extracelular no processo de reparo da fratura, considerando que o tempo de consolidação depende significantemente da natureza e do tipo da lesão produzida. Quarenta (n = 40) ratos Wistar foram submetidos a fratura . Os animais foram avaliados em oito (n = 8) grupos de cinco (n = 5) animais, cada grupo emperimental com 12, 24, 48, 72, 96, 144, 192 e 240 horas após a fratura (12h até 10 dias). As fraturas foram classificadas de acordo com o sistema de classificação internacional de fratura de Muller100, AO (Associação para Osteosíntese). Foram encontradas fraturas simples em 86% do total, sendo 68% de fraturas transversas e 18% de fraturas obliquas, 14% do total de fraturas foram complexas, sendo 8% de fraturas irregulares e 6% de fraturas segmentares. Esses resultados demonstram que o aparelho permite padronizar radiológicamente o tipo de fratura, caracterizado pela linha que separa os fragmentos ósseos. Os resultados qualitativos dos componentes da matriz extracelular para TGF-β, VEGF, colágeno I e II, osteopontina, proteoglicanos, fibras do sistema elástico com a coloração de resorcina funcsina de Weigert, e para proliferação celular pelo PCNA, assim como os resultados morfométricos, sugerem que a modulação da expressão dos componentes da matriz extracelular e a proliferação celular durante o processo de reparo da fratura não é homogênea para todos os componentes teciduais, dependendo significantemente das tensões locais geradas pelo tipo da linha de fratura que pode ser determinante no tempo de regeneração do osso e na qualidade da restauração das propriedades biomecânica. Nossos achados podem contribuir para melhor compreensão da reparo de fratura óssea e para novas abordagens terapêuticas que considerem as propriedades biomecânicas do tecido ósseo em reparo nas suas diferentes etapas