996 resultados para Biogenic atmospheric emissions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The letters published in the ‘Focus issue on high energy particles and atmospheric processes’ serve to broaden the discussion about the influence of high energy particles on the atmosphere beyond their possible effects on clouds and climate. These letters link climate and meteorological processes with atmospheric electricity, atmospheric chemistry, high energy physics and aerosol science from the smallest molecular cluster ions through to liquid droplets. Progress in such a disparate and complex topic is very likely to benefit from continued interdisciplinary interactions between traditionally distinct science areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most significant sources of greenhouse gas (GHG) emissions in Canada is the buildings sector, with over 30% of national energy end-use occurring in buildings. Energy use must be addressed to reduce emissions from the buildings sector, as nearly 70% of all Canada’s energy used in the residential sector comes from fossil sources. An analysis of GHG emissions from the existing residential building stock for the year 2010 has been conducted for six Canadian cities with different climates and development histories: Vancouver, Edmonton, Winnipeg, Toronto, Montreal, and Halifax. Variation across these cities is seen in their 2010 GHG emissions, due to climate, characteristics of the building stock, and energy conversion technologies, with Halifax having the highest per capita emissions at 5.55 tCO2e/capita and Montreal having the lowest at 0.32 tCO2e/capita. The importance of the provincial electricity grid’s carbon intensity is emphasized, along with era of construction, occupancy, floor area, and climate. Approaches to achieving deep emissions reductions include innovative retrofit financing and city level residential energy conservation by-laws; each region should seek location-appropriate measures to reduce energy demand within its residential housing stock, as well as associated GHG emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study asks how well are cities doing in reducing their greenhouse gas emissions. Data from six cities with repeat GHG emission inventories for the period 2004–2009 is examined: Berlin, Boston, Greater Toronto, London, New York City and Seattle. All of the cities are reducing their per capita GHG emissions, primarily through changes to stationary combustion. On average the cities are reducing per capita emissions by 0.27 t CO2e/capita per year; this is about the same average rate as the cities nation states, although the cities are reducing emissions faster in percentage terms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Of the many sources of urban greenhouse gas (GHG) emissions, solid waste is the only one for which management decisions are undertaken primarily by municipal governments themselves and is hence often the largest component of cities’ corporate inventories. It is essential that decision-makers select an appropriate quantification methodology and have an appreciation of methodological strengths and shortcomings. This work compares four different waste emissions quantification methods, including Intergovernmental Panel on Climate Change (IPCC) 1996 guidelines, IPCC 2006 guidelines, U.S. Environmental Protection Agency (EPA) Waste Reduction Model (WARM), and the Federation of Canadian Municipalities- Partners for Climate Protection (FCM-PCP) quantification tool. Waste disposal data for the greater Toronto area (GTA) in 2005 are used for all methodologies; treatment options (including landfill, incineration, compost, and anaerobic digestion) are examined where available in methodologies. Landfill was shown to be the greatest source of GHG emissions, contributing more than three-quarters of total emissions associated with waste management. Results from the different landfill gas (LFG) quantification approaches ranged from an emissions source of 557 kt carbon dioxide equivalents (CO2e) (FCM-PCP) to a carbon sink of −53 kt CO2e (EPA WARM). Similar values were obtained between IPCC approaches. The IPCC 2006 method was found to be more appropriate for inventorying applications because it uses a waste-in-place (WIP) approach, rather than a methane commitment (MC) approach, despite perceived onerous data requirements for WIP. MC approaches were found to be useful from a planning standpoint; however, uncertainty associated with their projections of future parameter values limits their applicability for GHG inventorying. MC and WIP methods provided similar results in this case study; however, this is case specific because of similarity in assumptions of present and future landfill parameters and quantities of annual waste deposited in recent years being relatively consistent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trace element measurements in PM10–2.5, PM2.5–1.0 and PM1.0–0.3 aerosol were performed with 2 h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model, conducted on data sets comprising all three sites but segregated by size. Combining the sites enabled separation of sources with high temporal covariance but significant spatial variability. Separation of sizes improved source resolution by preventing sources occurring in only a single size fraction from having too small a contribution for the model to resolve. Anchor profiles were retrieved internally by analysing data subsets, and these profiles were used in the analyses of the complete data sets of all sites for enhanced source apportionment. A total of nine different factors were resolved (notable elements in brackets): in PM10–2.5, brake wear (Cu, Zr, Sb, Ba), other traffic-related (Fe), resuspended dust (Si, Ca), sea/road salt (Cl), aged sea salt (Na, Mg) and industrial (Cr, Ni); in PM2.5–1.0, brake wear, other traffic-related, resuspended dust, sea/road salt, aged sea salt and S-rich (S); and in PM1.0–0.3, traffic-related (Fe, Cu, Zr, Sb, Ba), resuspended dust, sea/road salt, aged sea salt, reacted Cl (Cl), S-rich and solid fuel (K, Pb). Human activities enhance the kerb-to-rural concentration gradients of coarse aged sea salt, typically considered to have a natural source, by 1.7–2.2. These site-dependent concentration differences reflect the effect of local resuspension processes in London. The anthropogenically influenced factors traffic (brake wear and other traffic-related processes), dust and sea/road salt provide further kerb-to-rural concentration enhancements by direct source emissions by a factor of 3.5–12.7. The traffic and dust factors are mainly emitted in PM10–2.5 and show strong diurnal variations with concentrations up to 4 times higher during rush hour than during night-time. Regionally influenced S-rich and solid fuel factors, occurring primarily in PM1.0–0.3, have negligible resuspension influences, and concentrations are similar throughout the day and across the regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effect of clouds on the atmospheric circulation response to CO2 quadrupling in an aquaplanet model with a slab-ocean lower boundary. The cloud effect is isolated by locking the clouds to either the control or 4xCO2 state in the shortwave (SW) or longwave (LW) radiation schemes. In our model, cloud-radiative changes explain more than half of the total poleward expansion of the Hadley cells, midlatitude jets, and storm tracks under CO2 quadrupling, even though they cause only one-fourth of the total global-mean surface warming. The effect of clouds on circulation results mainly from the SW cloud-radiative changes, which strongly enhance the Equator-to-pole temperature gradient at all levels in the troposphere, favoring stronger and poleward-shifted midlatitude eddies. By contrast, quadrupling CO2 while holding the clouds fixed causes strong polar amplification and weakened midlatitude baroclinicity at lower levels, yielding only a small poleward expansion of the circulation. Our results show that (a) the atmospheric circulation responds sensitively to cloud-driven changes in meridional and vertical temperature distribution, and (b) the spatial structure of cloud feedbacks likely plays a dominant role in the circulation response to greenhouse gas forcing. While the magnitude and spatial structure of the cloud feedback are expected to be highly model-dependent, an analysis of 4xCO2 simulations of CMIP5 models shows that the SW cloud feedback likely forces a poleward expansion of the tropospheric circulation in most climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substantial changes in anthropogenic aerosols and precursor gas emissions have occurred over recent decades due to the implementation of air pollution control legislation and economic growth. The response of atmospheric aerosols to these changes and the impact on climate are poorly constrained, particularly in studies using detailed aerosol chemistry–climate models. Here we compare the HadGEM3-UKCA (Hadley Centre Global Environment Model-United Kingdom Chemistry and Aerosols) coupled chemistry–climate model for the period 1960–2009 against extensive ground-based observations of sulfate aerosol mass (1978–2009), total suspended particle matter (SPM, 1978–1998), PM10 (1997–2009), aerosol optical depth (AOD, 2000–2009), aerosol size distributions (2008–2009) and surface solar radiation (SSR, 1960–2009) over Europe. The model underestimates observed sulfate aerosol mass (normalised mean bias factor (NMBF) = −0.4), SPM (NMBF = −0.9), PM10 (NMBF = −0.2), aerosol number concentrations (N30 NMBF = −0.85; N50 NMBF = −0.65; and N100 NMBF = −0.96) and AOD (NMBF = −0.01) but slightly overpredicts SSR (NMBF = 0.02). Trends in aerosol over the observational period are well simulated by the model, with observed (simulated) changes in sulfate of −68 % (−78 %), SPM of −42 % (−20 %), PM10 of −9 % (−8 %) and AOD of −11 % (−14 %). Discrepancies in the magnitude of simulated aerosol mass do not affect the ability of the model to reproduce the observed SSR trends. The positive change in observed European SSR (5 %) during 1990–2009 ("brightening") is better reproduced by the model when aerosol radiative effects (ARE) are included (3 %), compared to simulations where ARE are excluded (0.2 %). The simulated top-of-the-atmosphere aerosol radiative forcing over Europe under all-sky conditions increased by > 3.0 W m−2 during the period 1970–2009 in response to changes in anthropogenic emissions and aerosol concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric moisture characteristics associated with the heaviest 1% of daily rainfall events affecting regions of the British Isles are analysed over the period 1997–2008. A blended satellite/rain-gauge data set (GPCP-1DD) and regionally averaged daily rain-gauge observations (HadUKP) are combined with the ERA Interim reanalysis. These are compared with simulations from the HadGEM2-A climate model which applied observed sea surface temperature and realistic radiative forcings. Median extreme daily rainfall across the identified events and locations is larger for GPCP (32 mm day−1) than HadUKP and the simulations (∼25 mm day−1). The heaviest observed and simulated daily rainfall events are associated with increased specific humidity and horizontal transport of moisture (median 850 hPa specific humidity of ∼6 g kg−1 and vapour transport of ∼150 g kg−1 m s−1 for both observed and simulated events). Extreme daily rainfall events are less common during spring and summer across much of the British Isles, but in the south east region, they contribute up to 60% of the total number of distinct extreme daily rainfall events during these months. Compared to winter events, the summer events over south east Britain are associated with a greater magnitude and more southerly location of moisture maxima and less spatially extensive regions of enhanced moisture transport. This contrasting dependence of extreme daily rainfall on moisture characteristics implies a range of driving mechanisms that depend upon location and season. Higher spatial and temporal resolution data are required to explore these processes further, which is vital in assessing future projected changes in rainfall and associated flooding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncertainty of Arctic seasonal to interannual predictions arising from model errors and initial state uncertainty has been widely discussed in the literature, whereas the irreducible forecast uncertainty (IFU) arising from the chaoticity of the climate system has received less attention. However, IFU provides important insights into the mechanisms through which predictability is lost, and hence can inform prioritization of model development and observations deployment. Here, we characterize how internal oceanic and surface atmospheric heat fluxes contribute to IFU of Arctic sea ice and upper ocean heat content in an Earth system model by analyzing a set of idealized ensemble prediction experiments. We find that atmospheric and oceanic heat flux are often equally important for driving unpredictable Arctic-wide changes in sea ice and surface water temperatures, and hence contribute equally to IFU. Atmospheric surface heat flux tends to dominate Arctic-wide changes for lead times of up to a year, whereas oceanic heat flux tends to dominate regionally and on interannual time scales. There is in general a strong negative covariance between surface heat flux and ocean vertical heat flux at depth, and anomalies of lateral ocean heat transport are wind-driven, which suggests that the unpredictable oceanic heat flux variability is mainly forced by the atmosphere. These results are qualitatively robust across different initial states, but substantial variations in the amplitude of IFU exist. We conclude that both atmospheric variability and the initial state of the upper ocean are key ingredients for predictions of Arctic surface climate on seasonal to interannual time scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ruminant production is a vital part of food industry but it raises environmental concerns, partly due to the associated methane outputs. Efficient methane mitigation and estimation of emissions from ruminants requires accurate prediction tools. Equations recommended by international organizations or scientific studies have been developed with animals fed conserved forages and concentrates and may be used with caution for grazing cattle. The aim of the current study was to develop prediction equations with animals fed fresh grass in order to be more suitable to pasture-based systems and for animals at lower feeding levels. A study with 25 nonpregnant nonlactating cows fed solely fresh-cut grass at maintenance energy level was performed over two consecutive grazing seasons. Grass of broad feeding quality, due to contrasting harvest dates, maturity, fertilisation and grass varieties, from eight swards was offered. Cows were offered the experimental diets for at least 2 weeks before housed in calorimetric chambers over 3 consecutive days with feed intake measurements and total urine and faeces collections performed daily. Methane emissions were measured over the last 2 days. Prediction models were developed from 100 3-day averaged records. Internal validation of these equations, and those recommended in literature, was performed. The existing in greenhouse gas inventories models under-estimated methane emissions from animals fed fresh-cut grass at maintenance while the new models, using the same predictors, improved prediction accuracy. Error in methane outputs prediction was decreased when grass nutrient, metabolisable energy and digestible organic matter concentrations were added as predictors to equations already containing dry matter or energy intakes, possibly because they explain feed digestibility and the type of energy-supplying nutrients more efficiently. Predictions based on readily available farm-level data, such as liveweight and grass nutrient concentrations were also generated and performed satisfactorily. New models may be recommended for predictions of methane emissions from grazing cattle at maintenance or low feeding levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is an empirical-based study of the European Union’s Emissions Trading Scheme (EU ETS) and its implications in terms of corporate environmental and financial performance. The novelty of this study includes the extended scope of the data coverage, as most previous studies have examined only the power sector. The use of verified emissions data of ETS-regulated firms as the environmental compliance measure and as the potential differentiating criteria that concern the valuation of EU ETS-exposed firms in the stock market is also an original aspect of this study. The study begins in Chapter 2 by introducing the background information on the emission trading system (ETS), which focuses on (i) the adoption of ETS as an environmental management instrument and (ii) the adoption of ETS by the European Union as one of its central climate policies. Chapter 3 surveys four databases that provide carbon emissions data in order to determine the most suitable source of the data to be used in the later empirical chapters. The first empirical chapter, which is also Chapter 4 of this thesis, investigates the determinants of the emissions compliance performance of the EU ETS-exposed firms through constructing the best possible performance ratio from verified emissions data and self-configuring models for a panel regression analysis. Chapter 5 examines the impacts on the EU ETS-exposed firms in terms of their equity valuation with customised portfolios and multi-factor market models. The research design takes into account the emissions allowance (EUA) price as an additional factor, as it has the most direct association with the EU ETS to control for the exposure. The final empirical Chapter 6 takes the investigation one step further, by specifically testing the degree of ETS exposure facing different sectors with sector-based portfolios and an extended multi-factor market model. The findings from the emissions performance ratio analysis show that the business model of firms significantly influences emissions compliance, as the capital intensity has a positive association with the increasing emissions-to-emissions cap ratio. Furthermore, different sectors show different degrees of sensitivity towards the determining factors. The production factor influences the performance ratio of the Utilities sector, but not the Energy or Materials sectors. The results show that the capital intensity has a more profound influence on the utilities sector than on the materials sector. With regard to the financial performance impact, ETS-exposed firms as aggregate portfolios experienced a substantial underperformance during the 2001–2004 period, but not in the operating period of 2005–2011. The results of the sector-based portfolios show again the differentiating effect of the EU ETS on sectors, as one sector is priced indifferently against its benchmark, three sectors see a constant underperformance, and three sectors have altered outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general circulation model of intermediate complexity with an idealized Earth-like aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is on the atmospheric mean meridional circulation and global thermodynamic properties. The atmosphere counterbalances to a large extent the imposed changes in the oceanic heat transport, but, nonetheless, significant modifications to the atmospheric general circulation are found. Increasing the strength of the oceanic heat transport up to 2.5 PW leads to an increase in the global mean near-surface temperature and to a decrease in its equator-to-pole gradient. For stronger transports, the gradient is reduced further, but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. Additionally, a stronger oceanic heat transport leads to a decline in the intensity and a poleward shift of the maxima of both the Hadley and Ferrel cells. Changes in zonal mean diabatic heating and friction impact the properties of the Hadley cell, while the behavior of the Ferrel cell is mostly controlled by friction. The efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport. This suggests that the climate system becomes less efficient and turns into a state of reduced entropy production as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fluids with different temperatures, thus reducing the available energy in the climate system and bringing it closer to a state of thermal equilibrium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atmospheric response to an idealized decline in Arctic sea ice is investigated in a novel fully coupled climate model experiment. In this experiment two ensembles of single-year model integrations are performed starting on 1 April, the approximate start of the ice melt season. By perturbing the initial conditions of sea ice thickness (SIT), declines in both sea ice concentration and SIT, which result in sea ice distributions that are similar to the recent sea ice minima of 2007 and 2012, are induced. In the ice loss regions there are strong (~3 K) local increases in sea surface temperature (SST); additionally, there are remote increases in SST in the central North Pacific and subpolar gyre in the North Atlantic. Over the central Arctic there are increases in surface air temperature (SAT) of ~8 K due to increases in ocean–atmosphere heat fluxes. There are increases in SAT over continental North America that are in good agreement with recent changes as seen by reanalysis data. It is estimated that up to two-thirds of the observed increase in SAT in this region could be related to Arctic sea ice loss. In early summer there is a significant but weak atmospheric circulation response that projects onto the summer North Atlantic Oscillation (NAO). In early summer and early autumn there is an equatorward shift of the eddy-driven jet over the North Atlantic as a result of a reduction in the meridional temperature gradients. In winter there is no projection onto a particular phase of the NAO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eddy covariance has been used in urban areas to evaluate the net exchange of CO2 between the surface and the atmosphere. Typically, only the vertical flux is measured at a height 2–3 times that of the local roughness elements; however, under conditions of relatively low instability, CO2 may accumulate in the airspace below the measurement height. This can result in inaccurate emissions estimates if the accumulated CO2 drains away or is flushed upwards during thermal expansion of the boundary layer. Some studies apply a single height storage correction; however, this requires the assumption that the response of the CO2 concentration profile to forcing is constant with height. Here a full seasonal cycle (7th June 2012 to 3rd June 2013) of single height CO2 storage data calculated from concentrations measured at 10 Hz by open path gas analyser are compared to a data set calculated from a concurrent switched vertical profile measured (2 Hz, closed path gas analyser) at 10 heights within and above a street canyon in central London. The assumption required for the former storage determination is shown to be invalid. For approximately regular street canyons at least one other measurement is required. Continuous measurements at fewer locations are shown to be preferable to a spatially dense, switched profile, as temporal interpolation is ineffective. The majority of the spectral energy of the CO2 storage time series was found to be between 0.001 and 0.2 Hz (500 and 5 s respectively); however, sampling frequencies of 2 Hz and below still result in significantly lower CO2 storage values. An empirical method of correcting CO2 storage values from under-sampled time series is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed observations of the solar system planets reveal a wide variety of local atmospheric conditions. Astronomical observations have revealed a variety of extrasolar planets none of which resembles any of the solar system planets in full. Instead, the most massive amongst the extrasolar planets, the gas giants, appear very similar to the class of (young) Brown Dwarfs which are amongst the oldest objects in the universe. Despite of this diversity, solar system planets, extrasolar planets and Brown Dwarfs have broadly similar global temperatures between 300K and 2500K. In consequence, clouds of different chemical species form in their atmospheres. While the details of these clouds differ, the fundamental physical processes are the same. Further to this, all these objects were observed to produce radio and X-ray emission. While both kinds of radiation are well studied on Earth and to a lesser extent on the solar system planets, the occurrence of emission that potentially originate from accelerated electrons on Brown Dwarfs, extrasolar planets and protoplanetary disks is not well understood yet. This paper offers an interdisciplinary view on electrification processes and their feedback on their hosting environment in meteorology, volcanology, planetology and research on extrasolar planets and planet formation.