987 resultados para Beam parameter product (BPP)
Resumo:
Shockwave lithotripsy is a noninvasive medical procedure wherein shockwaves are repeatedly focused at the location of kidney stones in order to pulverize them. Stone comminution is thought to be the product of two mechanisms: the propagation of stress waves within the stone and cavitation erosion. However, the latter mechanism has also been implicated in vascular injury. In the present work, shock-induced bubble collapse is studied in order to understand the role that it might play in inducing vascular injury. A high-order accurate, shock- and interface-capturing numerical scheme is developed to simulate the three-dimensional collapse of the bubble in both the free-field and inside a vessel phantom. The primary contributions of the numerical study are the characterization of the shock-bubble and shock-bubble-vessel interactions across a large parameter space that includes clinical shockwave lithotripsy pressure amplitudes, problem geometry and tissue viscoelasticity, and the subsequent correlation of these interactions to vascular injury. Specifically, measurements of the vessel wall pressures and displacements, as well as the finite strains in the fluid surrounding the bubble, are utilized with available experiments in tissue to evaluate damage potential. Estimates are made of the smallest injurious bubbles in the microvasculature during both the collapse and jetting phases of the bubble's life cycle. The present results suggest that bubbles larger than 1 μm in diameter could rupture blood vessels under clinical SWL conditions.
Resumo:
Our understanding of the processes and mechanisms by which secondary organic aerosol (SOA) is formed is derived from laboratory chamber studies. In the atmosphere, SOA formation is primarily driven by progressive photooxidation of SOA precursors, coupled with their gas-particle partitioning. In the chamber environment, SOA-forming vapors undergo multiple chemical and physical processes that involve production and removal via gas-phase reactions; partitioning onto suspended particles vs. particles deposited on the chamber wall; and direct deposition on the chamber wall. The main focus of this dissertation is to characterize the interactions of organic vapors with suspended particles and the chamber wall and explore how these intertwined processes in laboratory chambers govern SOA formation and evolution.
A Functional Group Oxidation Model (FGOM) that represents SOA formation and evolution in terms of the competition between functionalization and fragmentation, the extent of oxygen atom addition, and the change of volatility, is developed. The FGOM contains a set of parameters that are to be determined by fitting of the model to laboratory chamber data. The sensitivity of the model prediction to variation of the adjustable parameters allows one to assess the relative importance of various pathways involved in SOA formation.
A critical aspect of the environmental chamber is the presence of the wall, which can induce deposition of SOA-forming vapors and promote heterogeneous reactions. An experimental protocol and model framework are first developed to constrain the vapor-wall interactions. By optimal fitting the model predictions to the observed wall-induced decay profiles of 25 oxidized organic compounds, the dominant parameter governing the extent of wall deposition of a compound is identified, i.e., wall accommodation coefficient. By correlating this parameter with the molecular properties of a compound via its volatility, the wall-induced deposition rate of an organic compound can be predicted based on its carbon and oxygen numbers in the molecule.
Heterogeneous transformation of δ-hydroxycarbonyl, a major first-generation product from long-chain alkane photochemistry, is observed on the surface of particles and walls. The uniqueness of this reaction scheme is the production of substituted dihydrofuran, which is highly reactive towards ozone, OH, and NO3, thereby opening a reaction pathway that is not usually accessible to alkanes. A spectrum of highly-oxygenated products with carboxylic acid, ester, and ether functional groups is produced from the substituted dihydrofuran chemistry, thereby affecting the average oxidation state of the alkane-derived SOA.
The vapor wall loss correction is applied to several chamber-derived SOA systems generated from both anthropogenic and biogenic sources. Experimental and modeling approaches are employed to constrain the partitioning behavior of SOA-forming vapors onto suspended particles vs. chamber walls. It is demonstrated that deposition of SOA-forming vapors to the chamber wall during photooxidation experiments can lead to substantial and systematic underestimation of SOA. Therefore, it is likely that a lack of proper accounting for vapor wall losses that suppress chamber-derived SOA yields contribute substantially to the underprediction of ambient SOA concentrations in atmospheric models.
Resumo:
A previously suggested birefringence-customized modular optical interconnect technique is extended for lens-free relay operation. Various lens-free relay imaging models are developed. We claim that the lens-free relay system is important in simplifying an optical interconnect system whenever the imaging conditions permit. To verify the validity of various proposed concepts, we experimentally implemented some 8 x 8 optical permutation modules. High-power efficiency and low channel cross talk were experimentally observed. In general, the larger the channel spacing, the less the cross talk. A quantitative cross-talk measurement of the lens-free relay system shows that, for a fixed channel width of 0.5 mm and channel spacings of 0.5, 1, and 2 mm, a less than -20-dB cross-talk performance can be guaranteed for lens-free relay distances of 40, 280, and 430 mm, respectively. (C) 1998 Optical Society of America.
Resumo:
Abstract Environmental changes may have an impact on life conditions of the fish, e.g. food supply for the fish. The prevailing environmental conditions apply evenly to all age groups of one stock. Small fish have high growth rates, whereas large fish grow with low rates. But, it can be shown on the basis of the von Bertalanffy-growth model that it is sufficient to know only the growth rate of one single age group to compute the growth rates of all other age groups. The growth rate of a reference fish GRF (e.g. a fish with a body mass of 1 kg) was introduced as a reference growth describing the current food condition of all age groups of the stock. As an example a time series of the reference-growth rate of the northern cod stock (NAFO, 3K) was computed for the time span 1979 to 1999. For the northern cod stock it can be observed that environmental conditions caused growth rates below the long-term mean for seven years in a row. After a prolonged hunger period the fish stock collapsed in 1992 also by the impact of fisheries - and this was probably not a coincidence. Now, with the reference-growth rate GRF a simple and handy parameter was found to summarize the influence of the environmental conditions on growth and other derived models and therefore makes it easier to compute the influence of environmental changes within stock assessment. Zusammenfassung Veränderungen der Umwelt können Auswirkungen auf die Lebensbedingungen der Fische haben, z. B. auf das Nahrungsangebot der Fische. Die vorherrschenden Umgebungsbedingungen wirken gleichmäßig auf alle Altersgruppen eines Bestandes, wobei typischer Weise kleineFische hohe Wachstumsraten haben, während die großen Fische mit niedrigen Raten wachsen. Auf der Grundlage des von Bertalanffy-Wachstumsmodells kann gezeigt werden, dass es ausreicht, nur die Wachstumsrate von einer einzigen Altersgruppe zu kennen, um die Wachstumsraten von allen anderen Altersgruppen berechnen zu können. Die Wachstumsrate eines Referenz-Fisches (z.B. eines Fisches mit einer Körpermasse von 1 kg) wurde als Referenz-Wachstum GRF eingeführt, die den aktuellen Zustand des Nahrungsangebots füralle Altersgruppen des Bestandes beschreibt. Als Beispiel wurde einer Zeitreihe der Referenz-Wachstumsraten des nördlichen Kabeljaubestandes (NAFO, 3K) für die Zeitsraum 1979 bis 1999 berechnet. Für diesen Kabeljaubestand war zu beobachten, dass Umgebungsbedingungen für sieben Jahre in Folge Wachstumsraten unter dem langjährigen Mittelwert verursachten. Nach einer längeren Hungerperiode kollabierte dieser Fischbestand im Jahr 1992 auch durch den Einfluß der Fischerei - und dies war sicher kein Zufall. Jetzt, mit der Referenz-Wachstumsrate GRF, ist ein einfacher und handlicher Parameter gefunden, der es gestattet den Einfluss der Umweltbedingungen auf die Wachstumsbedingungen und andere davon abgeleitete Modelle zusammenzufassen. Dies macht es einfach, den Einfluss von Umweltveränderungen innerhalb der Bestandsabschätzungen zu berechnen.
Resumo:
We describe the rigorous results of a wide-angle laser beam scanner, obtained with the help of the vector refraction theory. Using the rigorous results, the distortion of the beam shape is discussed. The distortion to the beam varies with the different relative angles of double prisms. The scanner expands the beam in some directions while it contracts the beam in other directions. According to the conservation of energy, the distribution of the laser intensity is changed as well. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In this paper, we describe a wide-angle laser beam scanner and the rigorous result of the wide-angle laser beam scanner was obtained with the help of the vector refraction theory. Using the rigorous results, the distortion of the beam shape was discussed. The distortion of the beam shape is varying with the different relative angles of the double prisms. According to the conservation of the energy, the distribution of the laser intensity is changed too. (c) 2005 Elsevier GmbH. All rights reserved.