996 resultados para Bacterial parameters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yield in organic farming is generally much lower than its potential, which is due to its specificity. The objective of the present study was to quantify the yield spatial variation of wheat and relate it to soil parameters in an organic farm located in the north of the Negev Desert. Soil samples were gathered in a triangular grid at three time intervals. Yields were measured at 73 georeferenced points before the actual harvest. Several thematic maps of soil and yield parameters were produced using geographic information system and geostatistical methods. The strongest spatial correlation was found in the weight of 1000 grains and the weakest was in carbon flow. Temporal relationships were found between soil nitrate concentration, soil water content, and leaf area index. Wheat yield varied from 1.11 to 2.84 Mg ha(-1) and this remarkable variation indicates that the spatial analysis of soil and yield parameters is significant in organic agriculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacterial communities associated with healthy and diseased colonies of the cold-water gorgonian coral Eunicella verrucosa at three sites off the south-west coast of England were compared using denaturing gradient gel electrophoresis (DGGE) and clone libraries. Significant differences in community structure between healthy and diseased samples were discovered, as were differences in the level of disturbance to these communities at each site; this correlated with depth and sediment load. The majority of cloned sequences from healthy coral tissue affiliated with the Gammaproteobacteria. The stability of the bacterial community and dominance of specific genera found across visibly healthy colonies suggest the presence of a specific microbial community. Affiliations included a high proportion of Endozoicomonas sequences, which were most similar to sequences found in tropical corals. This genus has been found in a number of invertebrates and is suggested to have a role in coral health and in the metabolisation of dimethylsulfoniopropionate (DMSP) produced by zooxanthellae. However, screening of colonies for the presence of zooxanthellae produced a negative result. Diseased colonies showed a decrease in affiliated clones and an increase in clones related to potentially harmful/transient microorganisms but no increase in a particular pathogen. This study demonstrates that a better understanding of these bacterial communities, the factors that affect them and their role in coral health and disease will be of critical importance in predicting future threats to temperate gorgonian communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light (20-450 μmol photons m-2 s-1), temperature (3-11°C) and inorganic nutrient composition (nutrient replete and N, P and Si limitation) were manipulated to study their combined influence on growth, stoichiometry (C:N:P:Chl a) and primary production of the cold water diatom Chaetoceros wighamii. During exponential growth, the maximum growth rate (~0.8 d-1) was observed at high temperture and light; at 3°C the growth rate was ~30% lower under similar light conditions. The interaction effect of light and temperature were clearly visible from growth and cellular stoichiometry. The average C:N:P molar ratio was 80:13:1 during exponential growth, but the range, due to different light acclimation, was widest at the lowest temperature, reaching very low C:P (~50) and N:P ratios (~8) at low light and temperature. The C:Chl a ratio had also a wider range at the lowest temperature during exponential growth, ranging 16-48 (weight ratio) at 3°C compared with 17-33 at 11°C. During exponential growth, there was no clear trend in the Chl a normalized, initial slope (α*) of the photosynthesis-irradiance (PE) curve, but the maximum photosynthetic production (Pm) was highest for cultures acclimated to the highest light and temperature. During the stationary growth phase, the stoichiometric relationship depended on the limiting nutrient, but with generally increasing C:N:P ratio. The average photosynthetic quotient (PQ) during exponential growth was 1.26 but decreased to <1 under nutrient and light limitation, probably due to photorespiration. The results clearly demonstrate that there are interaction effects between light, temperature and nutrient limitation, and the data suggests greater variability of key parameters at low temperature. Understanding these dynamics will be important for improving models of aquatic primary production and biogeochemical cycles in a warming climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytoplankton size structure is an important indicator of the state of the pelagic ecosystem. Stimulated by the paucity of in situ observations on size structure, and by the sampling advantages of autonomous remote platforms, new efforts are being made to infer the size-structure of the phytoplankton from oceanographic variables that may be measured at high temporal and spatial resolution, such as total chlorophyll concentration. Large-scale analysis of in situ data has revealed coherent relationships between size-fractionated chlorophyll and total chlorophyll that can be quantified using the three-component model of Brewin et al. (2010). However, there are variations surrounding these general relationships. In this paper, we first revise the three-component model using a global dataset of surface phytoplankton pigment measurements. Then, using estimates of the average irradiance in the mixed-layer, we investigate the influence of ambient light on the parameters of the three-component model. We observe significant relationships between model parameters and the average irradiance in the mixed-layer, consistent with ecological knowledge. These relationships are incorporated explicitly into the three-component model to illustrate variations in the relationship between size-structure and total chlorophyll, ensuing from variations in light availability. The new model may be used as a tool to investigate modifications in size-structure in the context of a changing climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, bacterial symbiosis is recognized in the bivalve family Montacutidae of the superfamily Galeommatoidea. The ctenidial filaments of Syssitomya pourtalesiana Oliver, 2012 are extended abfrontally and a dense layer of bacteriocyte cells cover the entire surface behind a narrow ciliated frontal zone. The bacteria are extracellular and held within a matrix of epithelial extensions and microvilli. There is no cuticular layer (glycocalyx) covering the bacteria as in many thyasirid symbioses. The bacteriocytes hold more than one morphotype of bacteria, but bacilli, 1–3 μm in length, dominate. Scanning electron microscopy observations show a surface mat of filamentous bacteria over the extreme abfrontal surfaces. Filter feeding was confirmed by the presence of food particles in the stomach and the bivalve is presumed to be mixotrophic. Syssitomya is commensal and lives attached to the anal spines of the deep-sea echinoid Pourtalesia. In this position, echinoid feeding currents and echinoid faecal material may supply the bacteria with a variety of nutrient materials including dissolved organic matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of in situ measurements is essential in the validation and evaluation of the algorithms that provide coastal water quality data products from ocean colour satellite remote sensing. Over the past decade, various types of ocean colour algorithms have been developed to deal with the optical complexity of coastal waters. Yet there is a lack of a comprehensive intercomparison due to the availability of quality checked in situ databases. The CoastColour Round Robin (CCRR) project, funded by the European Space Agency (ESA), was designed to bring together three reference data sets using these to test algorithms and to assess their accuracy for retrieving water quality parameters. This paper provides a detailed description of these reference data sets, which include the Medium Resolution Imaging Spectrometer (MERIS) level 2 match-ups, in situ reflectance measurements, and synthetic data generated by a radiative transfer model (HydroLight). These data sets, representing mainly coastal waters, are available from doi:10.1594/PANGAEA.841950. The data sets mainly consist of 6484 marine reflectance (either multispectral or hyperspectral) associated with various geometrical (sensor viewing and solar angles) and sky conditions and water constituents: total suspended matter (TSM) and chlorophyll a (CHL) concentrations, and the absorption of coloured dissolved organic matter (CDOM). Inherent optical properties are also provided in the simulated data sets (5000 simulations) and from 3054 match-up locations. The distributions of reflectance at selected MERIS bands and band ratios, CHL and TSM as a function of reflectance, from the three data sets are compared. Match-up and in situ sites where deviations occur are identified. The distributions of the three reflectance data sets are also compared to the simulated and in situ reflectances used previously by the International Ocean Colour Coordinating Group (IOCCG, 2006) for algorithm testing, showing a clear extension of the CCRR data which covers more turbid waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of the seasonal deposition of phytoplankton and phytodetritus on surface sediment bacterial abundance and community composition was investigated at the Western English Channel site L4. Sediment and water samples were collected from January to September in 2012, increasing in frequency during periods of high water column phytoplankton abundance. Compared to the past two decades, the spring bloom in 2012 was both unusually long in duration and contained higher than average biomass. Within spring months, the phytoplankton bloom was well mixed through the water column and showed accumulations near the sea bed, as evidenced by flow cytometry measurements of nanoeukaryotes, water column chlorophyll a and the appearance of pelagic phytoplankton at the sediment. Measurements of chlorophyll and chlorophyll degradation products indicated phytoplankton material was heavily degraded after it reached the sediment surface: the nature of the chlorophyll degradation products (predominantly pheophorbide, pyropheophorbide and hydroxychlorophyllone) was indicative of grazing activity. The abundance of bacterial 16S rRNA genes g−1 sediment (used as a proxy for bacterial biomass) increased markedly with the onset of the phytoplankton bloom, and correlated with measurements of chlorophyll at the surface sediment. Together, this suggests that bacteria may have responded to nutrients released via grazing activity. In depth sequencing of the 16S rRNA genes indicated that the composition of the bacterial community shifted rapidly through-out the prolonged spring bloom period. This was primarily due to an increase in the relative sequence abundance of Flavobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine a model of the rate of phytoplankton production in the ocean and its dependence on depth. The model is analysed as a function of photosynthesis parameters and it is shown that: (i) production profiles with depth are determined uniquely by the parameter values; (ii) daily water column production is not uniquely determined by the parameter values; (iii) a unique combination of parameters exists for which the model best fits a measured production profile. An inverse procedure is developed to recover photosynthesis parameters from measured profiles of primary production, and its performance tested by application to profiles of primary production collected at the Hawaii Ocean Time Series. For each profile tested, the method is successful in recovery of the photosynthesis parameters. The method can be applied to the estimation of photosynthesis parameters from data on in situ production profiles, which have been collected globally for more than half a century, thereby augmenting the world archive of these parameters for application in ecosystem modelling and estimation of primary production from remotely sensed data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, increased focus has been placed on the role of intrauterine infection and inflammation in the pathogenesis of fetal brain injury leading to neurodevelopmental disorders such as cerebral palsy. At present, the mechanisms by which inflammatory processes during pregnancy cause this effect on the fetus are poorly understood. Our previous work has indicated an association between experimentally-induced intrauterine infection, increased proinflammatory cytokines, and increased white matter injury in the guinea pig fetus. In order to further elucidate the pathways by which inflammation in the maternal system or the fetal membranes leads to fetal impairment, a number of studies investigating aspects of the disease process have been performed. These studies represent a body of work encompassing novel research and results in a number of human and animal studies. Using a guinea pig model of inflammation, increased amniotic fluid proinflammatory cytokines and fetal brain injury were found after a maternal inflammatory response was initiated using endotoxin. In order to more closely monitor the fetal response to chorioamnionitis, a model using the chronically catheterized fetal ovine was carried out. This study demonstrated the adverse effects on fetal white matter after intrauterine exposure to bacterial inoculation, though the physiological parameters of the fetus were relatively stable throughout the experimental protocol, even when challenged with intermittent hypoxic episodes. The placenta is an important mediator between mother and fetus during gestation, though its role in the inflammatory process is largely undefined. Studies on the placental role in the inflammatory process were undertaken, and the limited ability of proinflammatory cytokines and endotoxin to cross the placenta are detailed herein. Neurodevelopmental disorders can be monitored in animal models in order to determine effective disease models for characterization of injury and use in therapeutic strategies. Our characterizations of postnatal behaviour in the guinea pig model using motility monitoring and spatial memory testing have shown small but significant differences in pups exposed to inflammatory processes in utero. The data presented herein contributes a breadth of knowledge to the ongoing elucidation of the pathways by which fetal brain injury occurs. Determining the pathway of damage will lead to discovery of diagnostic criteria, while determining the vulnerabilities of the developing fetus is essential in formulating therapeutic options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While protein tyrosine kinases (PTKs) have been extensively characterized in eukaryotes, far less is known about their emerging counterparts in prokaryotes. Studies of close to 20 homologs of bacterial protein tyrosine (BY) kinases have inaugurated a blooming new field of research, all since just the end of the last decade. These kinases are key regulators in the polymerization and exportation of the virulence-determining polysaccharides which shield the bacterial from the non-specific defenses of the host. This research is aimed at furthering our understanding of the BY kinases through the use of X-ray crystallography and various in vitro and in vivo experiments. We reported the first crystal structure of a bacterial PTK, the C-terminal kinase domain of E. coli tyrosine kinase (Etk) at 2.5Å resolution. The fold of the Etk kinase domain differs markedly from that of eukaryotic PTKs. Based on the observed structure and supporting evidences, we proposed a unique activation mechanism for BY kinases in Gram-negative bacteria. The phosphorylation of tyrosine residue Y574 at the active site and the specific interaction of P-Y574 with a previously unidentified key arginine residue, R614, unblock the Etk active site and activate the kinase. Both in vitro kinase activity and in vivo antibiotics resistance studies utilizing structure-guided mutants further support the novel activation mechanism. In addition, the level of phosphorylation of their C-terminal Tyr cluster is known to regulate the translocation of extracellular polysaccharides. Our studies have significantly clarified our understanding of how the phosphorylation status on the C-terminal tyrosine cluster of BY kinases affects the oligomerization state of the protein, which is likely the machinery of polysaccharide export regulation. In summary, this research makes a substantial contribution to the rapidly progressing research of bacterial tyrosine kinases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to mathematically characterize the effects of defined experimental parameters (probe speed and the ratio of the probe diameter to the diameter of sample container) on the textural/mechanical properties of model gel systems. In addition, this study examined the applicability of dimensional analysis for the rheological interpretation of textural data in terms of shear stress and rate of shear. Aqueous gels (pH 7) were prepared containing 15% w/w poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone) (PVP) (0, 3, 6, or 9% w/w). Texture profile analysis (TPA) was performed using a Stable Micro Systems texture analyzer (model TA-XT 2; Surrey, UK) in which an analytical probe was twice compressed into each formulation to a defined depth (15 mm) and at defined rates (1, 3, 5, 8, and 10 mm s-1), allowing a delay period (15 s) between the end of the first and beginning of the second compressions. Flow rheograms were performed using a Carri-Med CSL2-100 rheometer (TA Instruments, Surrey, UK) with parallel plate geometry under controlled shearing stresses at 20.0°?±?0.1°C. All formulations exhibited pseudoplastic flow with no thixotropy. Increasing concentrations of PVP significantly increased formulation hardness, compressibility, adhesiveness, and consistency. Increased hardness, compressibility, and consistency were ascribed to enhanced polymeric entanglements, thereby increasing the resistance to deformation. Increasing probe speed increased formulation hardness in a linear manner, because of the effects of probe speed on probe displacement and surface area. The relationship between formulation hardness and probe displacement was linear and was dependent on probe speed. Furthermore, the proportionality constant (gel strength) increased as a function of PVP concentration. The relationship between formulation hardness and diameter ratio was biphasic and was statistically defined by two linear relationships relating to diameter ratios from 0 to 0.4 and from 0.4 to 0.563. The dramatically increased hardness, associated with diameter ratios in excess of 0.4, was accredited to boundary effects, that is, the effect of the container wall on product flow. Using dimensional analysis, the hardness and probe displacement in TPA were mathematically transformed into corresponding rheological parameters, namely shearing stress and rate of shear, thereby allowing the application of the power law (??=?k?n) to textural data. Importantly, the consistencies (k) of the formulations, calculated using transformed textural data, were statistically similar to those obtained using flow rheometry. In conclusion, this study has, firstly, characterized the relationships between textural data and two key instrumental parameters in TPA and, secondly, described a method by which rheological information may be derived using this technique. This will enable a greater application of TPA for the rheological characterization of pharmaceutical gels and, in addition, will enable efficient interpretation of textural data under different experimental parameters.