981 resultados para BARIUM-TITANATE CERAMICS
Resumo:
The use of sol-gel materials to develop new biosensors has received great attention due to its characteristics and versatility of sol-gel process. An overview is presented of the state-of-the-art of electrochemical biosensors employing sol-gel materials. Low-temperature, porous sol-gel ceramics represent a new class for the immobilization of biomolecules. The rational design of sol-gel sensing materials, based on the judicious choice of the starting alkoxide, encapsulated reagents, and preparation conditions, allows tailoring of material properties in a wide range, and offers great potential for the development of electrochemical biosensors.
Resumo:
Bottom ash has been used as raw material to glass and glass ceramic production because it is a source of SiO2 and Al2O3. However, the high concentration of iron (about 10% wt.) difficulty the control of the nucleation and the crystallization processes. The iron content was reduced by magnetic process, where the magnetite phase was mainly removed. In order to compare glass ceramics obtained from original and low iron bottom ashes, microstructural and dilatometric characterizations were performed.
Resumo:
Within the scope of the TECNOLONIAL (HAR2008-02834/HIST) project, an archaeologi- cal and archaeometric research is being conduct- ed in order to clarify and systematize transport jars production in the Iberian peninsula and their distribution abroad, especially to the Americas, from the 15th to the 17th century. The production centre of Seville, in the Crown of Castile, produced large glazed and unglazed transport jars, called botijas, which were mainly devoted to the Atlantic trade network. The pres- ent study accounts for the first results obtained from an initial sample of 34 transport jars dated around the 15th-16th centuries from the produc- tion centre of Seville and the reception site of Santa María de la Antigua del Darién (gulf of Urabá, Colombia). This latter site is especially significant since it was the first Spanish founda- tion (1510) in continental America that obtained the title of town, and was the seat for the Governor of the new region called Castilla de Oro, as well as for the first diocese. All individuals were analyzed by means of x-ray fluorescence and diffraction analyses and then compared with the majolica production database from Seville. The results enabled us to define the first refer- ence groups for such modern transport jars, and to get a first insight into the jars coming to the Americas in the early 16th century whose prove- nance can be linked to Seville, but not Triana.
Resumo:
Fine powders of minerals are used commonly in the paper and paint industry, and for ceramics. Research for utilizing of different waste materials in these applications is environmentally important. In this work, the ultrafine grinding of two waste gypsum materials, namely FGD (Flue Gas Desulphurisation) gypsum and phosphogypsum from a phosphoric acid plant, with the attrition bead mill and with the jet mill has been studied. The ' objective of this research was to test the suitability of the attrition bead mill and of the jet mill to produce gypsum powders with a particle size of a few microns. The grinding conditions were optimised by studying the influences of different operational grinding parameters on the grinding rate and on the energy consumption of the process in order to achieve a product fineness such as that required in the paper industry with as low energy consumption as possible. Based on experimental results, the most influential parameters in the attrition grinding were found to be the bead size, the stirrer type, and the stirring speed. The best conditions, based on the product fineness and specific energy consumption of grinding, for the attrition grinding process is to grind the material with small grinding beads and a high rotational speed of the stirrer. Also, by using some suitable grinding additive, a finer product is achieved with a lower energy consumption. In jet mill grinding the most influential parameters were the feed rate, the volumetric flow rate of the grinding air, and the height of the internal classification tube. The optimised condition for the jet is to grind with a small feed rate and with a large rate of volumetric flow rate of grinding air when the inside tube is low. The finer product with a larger rate of production was achieved with the attrition bead mill than with the jet mill, thus the attrition grinding is better for the ultrafine grinding of gypsum than the jet grinding. Finally the suitability of the population balance model for simulation of grinding processes has been studied with different S , B , and C functions. A new S function for the modelling of an attrition mill and a new C function for the modelling of a jet mill were developed. The suitability of the selected models with the developed grinding functions was tested by curve fitting the particle size distributions of the grinding products and then comparing the fitted size distributions to the measured particle sizes. According to the simulation results, the models are suitable for the estimation and simulation of the studied grinding processes.
Resumo:
The main purpose of this work is the identification and quantification of phenolic compounds in coal tar samples from a ceramics factory in Cocal (SC), Brazil. The samples were subjected to preparative scale liquid chromatography, using Amberlyst A-27TM ion-exchange resin as stationary phase. The fractions obtained were classified as "acids" and "BN" (bases and neutrals). The identification and quantification of phenols, in the acid fraction, was made by gas chromatography coupled to mass spectrometry (GC/MS). Nearly twenty-five phenols were identified in the samples and nine of them were also quantified. The results showed that coal tar has large quantities of phenolic compounds of industrial interest.
Resumo:
The violence derived from crimes involving firearms represents one of the main concerns of society. For this reason modern techniques have emerged in forensic science to identify suspects at crime scenes. This work describes a methodology to identify residues present in the hands of suspect by using a high resolution inductively coupled plasma mass spectrometry and collection procedure based on ethylenediaminetetraacetic acid (EDTA) solution as a complexing agent in moistened swabs. In order to distinguish real gunshot residues from others types of residues present in the hand of suspect, ternary ratio per cent diagrams were developed for antimony (Sb), barium (Ba) and lead (Pb) detected on the hands of volunteers, before and immediately after shooting tests, revealing a remarkable difference in both situations.