997 resultados para Autocatalytic kinetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the kinetics of nonphotochemical quenching of chlorophyll fluorescence (qN) in spinach (Spinacia oleracea) leaves, chloroplasts, and purified light-harvesting complexes. The characteristic biphasic pattern of fluorescence quenching in dark-adapted leaves, which was removed by preillumination, was evidence of light activation of qN, a process correlated with the de-epoxidation state of the xanthophyll cycle carotenoids. Chloroplasts isolated from dark-adapted and light-activated leaves confirmed the nature of light activation: faster and greater quenching at a subsaturating transthylakoid pH gradient. The light-harvesting chlorophyll a/b-binding complexes of photosystem II were isolated from dark-adapted and light-activated leaves. When isolated from light-activated leaves, these complexes showed an increase in the rate of quenching in vitro compared with samples prepared from dark-adapted leaves. In all cases, the quenching kinetics were fitted to a single component hyperbolic function. For leaves, chloroplasts, and light-harvesting complexes, the presence of zeaxanthin was associated with an increased rate constant for the induction of quenching. We discuss the significance of these observations in terms of the mechanism and control of qN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intramolecular chain diffusion is an elementary process in the conformational fluctuations of the DNA hairpin-loop. We have studied the temperature and viscosity dependence of a model DNA hairpin-loop by FRET (fluorescence resonance energy transfer) fluctuation spectroscopy (FRETfs). Apparent thermodynamic parameters were obtained by analyzing the correlation amplitude through a two-state model and are consistent with steady-state fluorescence measurements. The kinetics of closing the loop show non-Arrhenius behavior, in agreement with theoretical prediction and other experimental measurements on peptide folding. The fluctuation rates show a fractional power dependence (β = 0.83) on the solution viscosity. A much slower intrachain diffusion coefficient in comparison to that of polypeptides was derived based on the first passage time theory of SSS [Szabo, A., Schulten, K. & Schulten, Z. (1980) J. Chem. Phys. 72, 4350–4357], suggesting that intrachain interactions, especially stacking interaction in the loop, might increase the roughness of the free energy surface of the DNA hairpin-loop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, cellular and molecular approaches have been used to analyze the biophysical nature of T cell receptor (TCR)–peptide MHC (pMHC) interactions for two autoreactive TCRs. These two TCRs recognize the N-terminal epitope of myelin basic protein (MBP1–11) bound to the MHC class II protein, I-Au, and are associated with murine experimental autoimmune encephalomyelitis. Mice transgenic for the TCRs have been generated and characterized in other laboratories. These analyses indicate that the mice either develop encephalomyelitis spontaneously (172.10 TCR) or only if immunized with autoantigen in adjuvant (1934.4 TCR). Here, we show that the 172.10 TCR binds MBP1–11:I-Au with a 4–5-fold higher affinity than the 1934.4 TCR. Consistent with the higher affinity, 172.10 T hybridoma cells are significantly more responsive to autoantigen than 1934.4 cells. The interaction of the 172.10 TCR with cognate ligand is more entropically unfavorable than that of the 1934.4 TCR, indicating that the 172.10 TCR undergoes greater conformational rearrangements upon ligand binding. The studies therefore suggest a correlation between the strength and plasticity of a TCR–pMHC interaction and the frequency of spontaneous disease in the corresponding TCR transgenic mice. The comparative analysis of these two TCRs has implications for understanding autoreactive T cell recognition and activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the mechanism of protein secondary structure formation is an essential part of the protein-folding puzzle. Here, we describe a simple statistical mechanical model for the formation of a β-hairpin, the minimal structural element of the antiparallel β-pleated sheet. The model accurately describes the thermodynamic and kinetic behavior of a 16-residue, β-hairpin-forming peptide, successfully explaining its two-state behavior and apparent negative activation energy for folding. The model classifies structures according to their backbone conformation, defined by 15 pairs of dihedral angles, and is further simplified by considering only the 120 structures with contiguous stretches of native pairs of backbone dihedral angles. This single sequence approximation is tested by comparison with a more complete model that includes the 215 possible conformations and 15 × 215 possible kinetic transitions. Finally, we use the model to predict the equilibrium unfolding curves and kinetics for several variants of the β-hairpin peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To quantitatively investigate the trafficking of the transmembrane lectin VIP36 and its relation to cargo-containing transport carriers (TCs), we analyzed a C-terminal fluorescent-protein (FP) fusion, VIP36-SP-FP. When expressed at moderate levels, VIP36-SP-FP localized to the endoplasmic reticulum, Golgi apparatus, and intermediate transport structures, and colocalized with epitope-tagged VIP36. Temperature shift and pharmacological experiments indicated VIP36-SP-FP recycled in the early secretory pathway, exhibiting trafficking representative of a class of transmembrane cargo receptors, including the closely related lectin ERGIC53. VIP36-SP-FP trafficking structures comprised tubules and globular elements, which translocated in a saltatory manner. Simultaneous visualization of anterograde secretory cargo and VIP36-SP-FP indicated that the globular structures were pre-Golgi carriers, and that VIP36-SP-FP segregated from cargo within the Golgi and was not included in post-Golgi TCs. Organelle-specific bleach experiments directly measured the exchange of VIP36-SP-FP between the Golgi and endoplasmic reticulum (ER). Fitting a two-compartment model to the recovery data predicted first order rate constants of 1.22 ± 0.44%/min for ER → Golgi, and 7.68 ± 1.94%/min for Golgi → ER transport, revealing a half-time of 113 ± 70 min for leaving the ER and 1.67 ± 0.45 min for leaving the Golgi, and accounting for the measured steady-state distribution of VIP36-SP-FP (13% Golgi/87% ER). Perturbing transport with AlF4− treatment altered VIP36-SP-GFP distribution and changed the rate constants. The parameters of the model suggest that relatively small differences in the first order rate constants, perhaps manifested in subtle differences in the tendency to enter distinct TCs, result in large differences in the steady-state localization of secretory components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene transfer to eukaryotic cells requires the uptake of exogenous DNA into the cell nucleus. Except during mitosis, molecular access to the nuclear interior is limited to passage through the nuclear pores. Here we demonstrate the nuclear uptake of extended linear DNA molecules by a combination of fluorescence microscopy and single-molecule manipulation techniques, using the latter to follow uptake kinetics of individual molecules in real time. The assays were carried out on nuclei reconstituted in vitro from extracts of Xenopus eggs, which provide both a complete complement of biochemical factors involved in nuclear protein import, and unobstructed access to the nuclear pores. We find that uptake of DNA is independent of ATP or GTP hydrolysis, but is blocked by wheat germ agglutinin. The kinetics are much slower than would be expected from hydrodynamic considerations. A fit of the data to a simple model suggests femto-Newton forces and a large friction relevant to the uptake process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The de-epoxidation of violaxanthin to antheraxanthin (Anth) and zeaxanthin (Zeax) in the xanthophyll cycle of higher plants and the generation of nonphotochemical fluorescence quenching in the antenna of photosystem II (PSII) are induced by acidification of the thylakoid lumen. Dicyclohexylcarbodiimide (DCCD) has been shown (a) to bind to lumen-exposed carboxy groups of antenna proteins and (b) to inhibit the pH-dependent fluorescence quenching. The possible influence of DCCD on the de-epoxidation reactions has been investigated in isolated pea (Pisum sativum L.) thylakoids. The Zeax formation was found to be slowed down in the presence of DCCD. The second step (Anth → Zeax) of the reaction sequence seemed to be more affected than the violaxanthin → Anth conversion. Comparative studies with antenna-depleted thylakoids from plants grown under intermittent light and with unstacked thylakoids were in agreement with the assumption that binding of DCCD to antenna proteins is probably responsible for the retarded kinetics. Analyses of the DCCD-induced alterations in different antenna subcomplexes showed that Zeax formation in the PSII antenna proteins was predominantly influenced by DCCD, whereas Zeax formation in photosystem I was nearly unaffected. Our data support the suggestion that DCCD binding to PSII antenna proteins is responsible for the observed alterations in xanthophyll conversion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of phototransduction of phytochrome A (phyA) and phytochrome B (phyB) were compared in etiolated Arabidopsis thaliana seedlings. The responses of hypocotyl growth, cotyledon unfolding, and expression of a light-harvesting chlorophyll a/b-binding protein of the photosystem II gene promoter fused to the coding region of β-glucuronidase (used as a reporter enzyme) were mediated by phyA under continuous far-red light (FR) and by phyB under continuous red light (R). The seedlings were exposed hourly either to n min of FR followed by 60 minus n min in darkness or to n min of R, 3 min of FR (to back-convert phyB to its inactive form), and 57 minus n min of darkness. For the three processes investigated here, the kinetics of phototransduction of phyB were faster than that of phyA. For instance, 15 min R h−1 (terminated with a FR pulse) were almost as effective as continuous R, whereas 15 min of FR h−1 caused less than 30% of the effect of continuous FR. This difference is interpreted in terms of divergence of signal transduction pathways downstream from phyA and phyB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Techniques of compartmental (efflux) and kinetic influx analyses with the radiotracer 13NH4+ were used to examine the adaptation to hypoxia (15, 35, and 50% O2 saturation) of root N uptake and metabolism in 3-week-old hydroponically grown rice (Oryza sativa L., cv IR72) seedlings. A time-dependence study of NH4+ influx into rice roots after onset of hypoxia (15% O2) revealed an initial increase in the first 1 to 2.5 h after treatment imposition, followed by a decline to less than 50% of influx in control plants by 4 d. Efflux analyses conducted 0, 1, 3, and 5 d after the treatment confirmed this adaptation pattern of NH4+ uptake. Half-lives for NH4+ exchange with subcellular compartments, cytoplasmic NH4+ concentrations, and efflux (as percentage of influx) were unaffected by hypoxia. However, significant differences were observed in the relative amounts of N allocated to NH4+ assimilation and the vacuole versus translocation to the shoot. Kinetic experiments conducted at 100, 50, 35, and 15% O2 saturation showed no significant change in the Km value for NH4+ uptake with varying O2 supply. However, Vmax was 42% higher than controls at 50% O2 saturation, unchanged at 35%, and 10% lower than controls at 15% O2. The significance of these flux adaptations is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful cryopreservation of most multicompartmental biological systems has not been achieved. One prerequisite for success is quantitative information on cryoprotectant permeation into and amongst the compartments. This report describes direct measurements of cryoprotectant permeation into a multicompartmental system using chemical shift selective magnetic resonance (MR) microscopy and MR spectroscopy. We used the developing zebrafish embryo as a model for studying these complex systems because these embryos are composed of two membrane-limited compartments: (i) a large yolk (surrounded by the yolk syncytial layer) and (ii) differentiating blastoderm cells (each surrounded by a plasma membrane). MR images of the spatial distribution of three cryoprotectants (dimethyl sulfoxide, propylene glycol, and methanol) demonstrated that methanol permeated the entire embryo within 15 min. In contrast, the other cryoprotectants exhibited little or no permeation over 2.5 h. MR spectroscopy and microinjections of cryoprotectants into the yolk inferred that the yolk syncytial layer plays a critical role in limiting the permeation of some cryoprotectants throughout the embryo. This study demonstrates the power of MR technology combined with micromanipulation for elucidating key physiological factors in cryobiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carcinogen-DNA adduct measurements may become useful biomarkers of effective dose and/or early effect. However, validation of this biomarker is required at several levels to ensure that human exposure and response are accurately reflected. Important in this regard is an understanding of the relative biomarker levels in target and nontarget organs and the response of the biomarker under the chronic, low-dose conditions to which humans are exposed. We studied the differences between single and chronic topical application of benzo[a]pyrene (BAP) on the accumulation and removal of BAP-DNA adducts in skin, lung, and liver. Animals were treated with BAP at 10, 25, or 50 nMol topically once or twice per week for as long as 15 weeks. Animals were sacrificed either at 24, 48, or 72 hr after the last dose at 1 and 30 treatments, and after 24 hr for all other treatment groups. Adduct levels increased with increasing dose, but the slope of the dose-response was different in each organ. At low doses, accumulation was linear in skin and lung, but at high doses the adduct levels in the lung increased dramatically at the same time when the levels in the skin reached apparent steady state. In the liver adduct, levels were lower than in target tissues and apparent steady-state adduct levels were reached rapidly, the maxima being independent of dose, suggesting that activating metabolism was saturated in this organ. Removal of adducts from skin, the target organ, was more rapid following single treatment than with chronic exposure. This finding is consistent with earlier data, indicating that some areas of the genome are more resistant to repair. Thus, repeated exposure and repair cycles would be more likely to cause an increase in the proportion of carcinogen-DNA adducts in repair-resistant areas of the genome. These findings indicate that single-dose experiments may underestimate the potential for carcinogenicity for compounds that follow this pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of photo-induced electrontransfer from high-potential iron-sulfur protein (HiPIP) to the photosynthetic reaction center (RC) of the purple phototroph Rhodoferarfermentans were studied. The rapid photooxidation of heme c-556 belonging to RC is followed, in the presence of HiPIP, by a slower reduction having a second-order rate constant of 4.8 x 10(7) M(-1) x s(-1). The limiting value of kobs at high HiPIP concentration is 95 s(-1). The amplitude of this slow process decreases with increasing HiPIP concentration. The amplitude of a faster phase, observed at 556 and 425 nm and involving heme c-556 reduction, increases proportionately. The rate constant of this fast phase, determined at 425 and 556 nm, is approximately 3 x 10(5) s(-1). This value is not dependent on HiPIP concentration, indicating that it is related to a first-order process. These observations are interpreted as evidence for the formation of a HiPIP-RC complex prior to the excitation flash, having a dissociation constant of -2.5 microM. The fast phase is absent at high ionic strength, indicating that the complex involves mainly electrostatic interactions. The ionic strength dependence of kobs for the slow phase yields a second-order rate constant at infinite ionic strength of 5.4 x 10(6) M(-1) x s(-1) and an electrostatic interaction energy of -2.1 kcal/mol (1 cal = 4.184 J). We conclude that Rhodoferar fermentans HiPIP is a very effective electron donor to the photosynthetic RC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental time series for a nonequilibrium reaction may in some cases contain sufficient data to determine a unique kinetic model for the reaction by a systematic mathematical analysis. As an example, a kinetic model for the self-assembly of microtubules is derived here from turbidity time series for solutions in which microtubules assemble. The model may be seen as a generalization of Oosawa's classical nucleation-polymerization model. It reproduces the experimental data with a four-stage nucleation process and a critical nucleus of 15 monomers.