994 resultados para Atomic ratio, Maximum
Resumo:
CHN analyses of sediments and rocks sampled during DSDP Leg 75 in the South Atlantic have provided concentrations of organic carbon and atomic C/N ratios of organic matter from two sites. High values of organic carbon were measured in sediments deposited during Neogene and Cretaceous times at Site 530 in the Angola Basin; sediments deposited at other times contain less than 0.5% organic carbon. Development of the Benguela Current and associated upwelling-supported biological productivity is recorded in late Miocene to Holocene sediments which contain 1 to 7% organic carbon. These sediments include debris flows and turbidites composed of predominantly biogenic materials originally deposited on the Walvis Ridge and on the African continental margin. Organic-carbon-rich black shales containing up to 17% organic carbon occur in late Albian to Coniacian turbidite sequences. These Cretaceous black shale layers are commonly several centimeters thick and are separated by bioturbated fine-grained organic-carbon-poor turbidites which are usually much thicker. At Site 532 on the Walvis Ridge, biogenic sediments deposited between late Miocene and Holocene times contain 1 to 9% organic carbon. Fluctuations in the intensity of high biological productivity associated with the Benguela Current are preserved in alternating light and dark layers of sediments. C/N ratios of organic matter in sediments from both sites are typical of marine sources
Resumo:
Studies by optical microscopy, x-ray diffraction, and electron probe techniques of ferromanganese concretions from three Canadian lakes reveal chemical banding of amorphous hydrated iron and manganese oxides. The average ratio of iron to manganese in concretions from these lakes varies from 0.43 to 2.56. The concentrations of cobalt, nickel, copper, and lead are one to two orders of magnitude below those reported for oceanic ferromanganese concretions.
Resumo:
Two diagenetic manganese nodules from the Peru Basin were investigated by thermal ionization mass spectrometry and high resolution alpha spectrometry for uranium and thorium. The TIMS concentrations for nodule 62KD (63KG) vary as follows: 0.12-1.01 ppb (0.06-0.59) 230Th, 0.51-1.98 ppm (0.43-1.40) 232Th, 0.13-0.80 ppb (0.09-0.49) 234U, and 1.95-13.47 ppm (1.66-8.24) 238U. Both nodules have average growth rates of ~110 mm per million years. However, from the variations of excess 230Th with depth we estimate partial accumulation rates which range from 50 to 400 mm per million years. The 234U dating method cannot be applied due to remobilization of U from the sediment and subsequent incorporation into the nodules' crystal lattice, reflected by decay corrected 234U values far above the ocean water value. Sections of fast nodule growth are related to those layers having high Mn/Fe ratios (up to 200) and higher densities. As a possible explanation we develop a scenario that describes similar glacial/interglacial trends in both nodules as a record of regional changes of sediment and/or deep water chemistry.
Resumo:
The Paleocene/Eocene Thermal Maximum (PETM) was a transient interval of global warming ~55 m.y. ago associated with transformation of ecosystems and changes in carbon cycling. The event was caused by the input of massive amounts of CO2 or CH4 to the ocean-atmosphere system. Rapid shoaling of the lysocline and calcite compensation depth (CCD) is a predicted response of CO2 or CH4 input; however, the extent of this shoaling is poorly constrained. Investigation of Ocean Drilling Program (ODP) Sites 1209-1212 at Shatsky Rise, which lies along a depth transect, suggests a minimum lysocline shoaling of ~500 m in the tropical Pacific Ocean during the PETM. The sites also show evidence of CaCO3 dissolution within the sediment column, carbonate "burn-down" below the level of the carbon isotope excursion, and a predicted response to a rapid change in deepwater carbonate saturation. Close examination of several foraminiferal preservation proxies (i.e., fragmentation, benthic/planktonic foraminiferal ratios, coarse fraction, and CaCO3 content) and observations of foraminifers reveal that increased fragmentation levels most reliably predict intervals with visually impoverished foraminiferal preservation as a result of dissolution. Low CaCO3 content and high benthic/planktonic ratios also mirror intervals of poorest preservation.
Resumo:
Bulk Ca and Ti contents and Ti/Ca ratio of sediment core GeoB11804-4, measured by ICP-OES after HF/HNO3/H2O2 microwave pressure digestion.
Resumo:
In terms of physical and genetic features studied nodules are assigned to the sedimentational manganese-iron type (Canary Basin) and to the iron-containing type (Guyana Basin). They are enriched in Fe, Co and Pb and depleted in Mn, Ni, Cu, and Zn. Cores of the nodules from the Canary Basin consist primarily of peridotite, gabbro, dolerite, and metamorphic rock. Great predominance of peridotite and gabbro indicates that blocks of ocean crust underwent considerable displacement, bringing the third and fourth layers of a crust to the surface.