994 resultados para Atomic Displacement Parameters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the time taken to flush pollutants from a naturally ventilated room. A simple theoretical model is developed to predict the time taken for neutrally-buoyant pollutants to be removed from a room by a flow driven by localised heat inputs; both line and point heat sources are considered. We show that the rate of flushing is a function of the room volume, vent areas ( A) and the distribution, number (n) and strength (B) of the heat sources. We also show that the entire problem can be reduced to a single parameter ( μ) that is a measure of the vent areas, and a dimensionless time ( τ) that is a function of B, V and μ. Small-scale salt-bath experiments were conducted to measure the flushing rates in order to validate our modelling assumptions and predictions. The predicted flushing times show good agreement with the experiments over a wide range of μ. We apply our model to a typical open plan office and lecture theatre and discuss some of the implications of our results. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we review the energy requirements to make materials on a global scale by focusing on the five construction materials that dominate energy used in material production: steel, cement, paper, plastics and aluminium. We then estimate the possibility of reducing absolute material production energy by half, while doubling production from the present to 2050. The goal therefore is a 75 per cent reduction in energy intensity. Four technology-based strategies are investigated, regardless of cost: (i) widespread application of best available technology (BAT), (ii) BAT to cutting-edge technologies, (iii) aggressive recycling and finally, and (iv) significant improvements in recycling technologies. Taken together, these aggressive strategies could produce impressive gains, of the order of a 50-56 per cent reduction in energy intensity, but this is still short of our goal of a 75 per cent reduction. Ultimately, we face fundamental thermodynamic as well as practical constraints on our ability to improve the energy intensity of material production. A strategy to reduce demand by providing material services with less material (called 'material efficiency') is outlined as an approach to solving this dilemma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effects of design parameters, such as cladding and coolant material choices, and operational phenomena, such as creep and fission product decay heat, on the tolerance of Accelerator Driven Subcritical Reactor (ADSR) fuel pin cladding to beam interruptions. This work aims to provide a greater understanding of the integration between accelerator and nuclear reactor technologies in ADSRs. The results show that an upper limit on cladding operating temperature of 550 °C is appropriate, as higher values of temperature tend to accelerate creep, leading to cladding failure much sooner than anticipated. The effect of fission product decay heat is to reduce significantly the maximum stress developed in the cladding during a beam-trip-induced transient. The potential impact of irradiation damage and the effects of the liquid metal coolant environment on the cladding are discussed. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of submerged slopes on the continental shelf to seismic or storm loading has become an important element in the risk assessment for offshore structures and "local" tsunami hazards worldwide. The geological profile of these slopes typically includes normally consolidated to lightly overconsolidated soft cohesive soils with layer thickness ranging from a few meters to hundreds of meters. The factor of safety obtained from pseudo-static analyses is not always a useful measure for evaluating the slope response, since values less than one do not necessarily imply slope failure with large movements of the soil mass. This paper addresses the relative importance of different factors affecting the response of submerged slopes during seismic loading. The analyses use a dynamic finite element code which includes a constitutive law describing the anisotropic stress-strain-strength behavior of normally consolidated to lightly overconsolidated clays. The model also incorporates anisotropic hardening to describe the effect of different shear strain and stress histories as well as bounding surface principles to provide realistic descriptions of the accumulation of the plastic strains and excess pore pressure during successive loading cycles. The paper presents results from parametric site response analyses on slope geometry and layering, soil material parameters, and input ground motion characteristics. The predicted maximum shear strains, permanent deformations, displacement time histories and maximum excess pore pressure development provide insight of slope performance during a seismic event. © 2006 Author(s). This work is licensed under a Creative Commons License.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlling the crystallographic phase purity of III-V nanowires is notoriously difficult, yet this is essential for future nanowire devices. Reported methods for controlling nanowire phase require dopant addition, or a restricted choice of nanowire diameter, and only rarely yield a pure phase. Here we demonstrate that phase-perfect nanowires, of arbitrary diameter, can be achieved simply by tailoring basic growth parameters: temperature and V/III ratio. Phase purity is achieved without sacrificing important specifications of diameter and dopant levels. Pure zinc blende nanowires, free of twin defects, were achieved using a low growth temperature coupled with a high V/III ratio. Conversely, a high growth temperature coupled with a low V/III ratio produced pure wurtzite nanowires free of stacking faults. We present a comprehensive nucleation model to explain the formation of these markedly different crystal phases under these growth conditions. Critical to achieving phase purity are changes in surface energy of the nanowire side facets, which in turn are controlled by the basic growth parameters of temperature and V/III ratio. This ability to tune crystal structure between twin-free zinc blende and stacking-fault-free wurtzite not only will enhance the performance of nanowire devices but also opens new possibilities for engineering nanowire devices, without restrictions on nanowire diameters or doping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light-matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light-vapour interactions on a chip. Specifically, we demonstrate light-matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical degradation is thought to be one of the causes of capacity fade within Lithium-Ion batteries. In this work we develop a coupled stress-diffusion model for idealized spherical storage particles, which is analogous to the development of thermal strains. We then non-dimensionalize the model and identify three important parameters that control the development of stress within these particles. We can therefore use a wide number of values for these parameters to make predictions about the stress responses of different materials. The maximum stress developed within the particle for different values of these parameters are plotted as stress maps. A two dimensional model of a battery was then developed, in order to study the effect of particle morphology. Copyright © 2012 by ASME.