999 resultados para Atmospheric diffusion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the physicochemical and drug diffusion properties of rifampicin containing poly(epsilon-caprolactone) (PCL)/polyethylene glycol (PEG) networks, designed as bioactive biomaterials. Uniquely, the effects of the states of both rifampicin and PEG and the interplay between these components on these properties are described. PCL matrices containing rifampicin (1-5%, w/w) and PEG 200 (0-15%, w/w) were prepared by casting from an organic solvent (dichloromethane). The films were subsequently characterized in terms of their thermal/thermorheological, surface and tensile properties, biodegradation and drug diffusion/release properties. Incorporation of PEG and/or rifampicin significantly affected the tensile and surface properties of PCL, lowering the ultimate tensile strength, % elongation at break, Young modulus and storage and loss moduli. Both in the absence and presence of PEG, solubilisation of rifampicin within the crystalline domains of PCL was observed. PEG was present as a dispersed liquid phase. The release of rifampicin (3% loading) was unaffected by the presence of PEG. Similarly the release of rifampicin (5%) was unaffected by low concentrations of PEG (5-10%) however, at higher loadings, the release rate of rifampicin was enhanced by the presence of PEG. Rifampicin release (10% loading) was enhanced by the presence of PEG in a concentration dependent fashion. These observations were accredited to enhanced porosity of the matrix. In all cases, diffusion-controlled release of rifampicin occurred which was unaffected by polymer degradation. This study has uniquely illustrated the effect of hydrophilic pore formers on the physicochemical properties of PCL. Interestingly, enhanced diffusion controlled release was only observed from biomaterials containing high loadings of PEG and rifampicin (5, 10%), concentrations that were shown to affect the mechanical properties of the biomaterials. Care should therefore be shown when adopting this strategy to enhance release of bioactive agents from biomaterials. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of atmospheric pressure nonthermal plasma represents an interesting and novel approach for the decontamination of surfaces colonized with microbial biofilms that exhibit enhanced tolerance to antimicrobial challenge. In this study, the influence of an atmospheric pressure nonthermal plasma jet, operated in a helium and oxygen gas mixture under ambient pressure, was evaluated against biofilms of Bacillus cereus,Staphylococcus aureus,Escherichia coli and Pseudomonas aeruginosa. Within <4 min of plasma exposure, complete eradication of the two Gram-positive bacterial biofilms was achieved. Although Gram-negative biofilms required longer treatment time, their complete eradication was still possible with 10 min of exposure. Whilst this study provides useful proof of concept data on the use of atmospheric pressure plasmas for the eradication of bacterial biofilms in vitro, it also demonstrates the critical need for improved understanding of the mechanisms and kinetics related to such a potentially significant approach. © 2012 Federation of European Microbiological Societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental values for the solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon and carbon monoxide in 1-butyl-3- methylimidazolium tetrafluoroborate, [bmim][BF4] - a room temperature ionic liquid - are reported as a function of temperature between 283 K and 343 K and at pressures close to atmospheric. Carbon dioxide is the most soluble gas with mole fraction solubilities of the order of 10-2. Ethane and methane are one order of magnitude more soluble than the other five gases that have mole fraction solubilities of the order of 10-4. Hydrogen is the less soluble of the gaseous solutes studied. From the variation of solubility, expressed as Henry's law constants, with temperature, the partial molar thermodynamic functions of solvation such as the standard Gibbs energy, the enthalpy, and the entropy are calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations is of 1%. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conceptual model is described for generating distributions of grazing animals, according to their searching behavior, to investigate the mechanisms animals may use to achieve their distributions. The model simulates behaviors ranging from random diffusion, through taxis and cognitively aided navigation (i.e., using memory), to the optimization extreme of the Ideal Free Distribution. These behaviors are generated from simulation of biased diffusion that operates at multiple scales simultaneously, formalizing ideas of multiple-scale foraging behavior. It uses probabilistic bias to represent decisions, allowing multiple search goals to be combined (e.g., foraging and social goals) and the representation of suboptimal behavior. By allowing bias to arise at multiple scales within the environment, each weighted relative to the others, the model can represent different scales of simultaneous decision-making and scale-dependent behavior. The model also allows different constraints to be applied to the animal's ability (e.g., applying food-patch accessibility and information limits). Simulations show that foraging-decision randomness and spatial scale of decision bias have potentially profound effects on both animal intake rate and the distribution of resources in the environment. Spatial variograms show that foraging strategies can differentially change the spatial pattern of resource abundance in the environment to one characteristic of the foraging strategy.</

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new nonlinear theory for the perpendicular transport of charged particles is presented. This approach is based on an improved nonlinear treatment of field line random walk in combination with a generalized compound diffusion model. The generalized compound diffusion model is much more systematic and reliable, in comparison to previous theories. Furthermore, the new theory shows remarkably good agreement with test-particle simulations and heliospheric observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (~10's s) exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of accurately measuring gas diffusivity in porous materials has led to a number of methods being developed. In this study the Temporal Analysis of Products (TAP) reactor and Flux Response Technology (FRT) have been used to examine the diffusivity in the washcoat supported on cordierite monoliths. Herein, the molecular diffusion of propane within four monoliths with differently prepared alumina/CeZrOx washcoats was investigated as a function of temperature. Moment-based analysis of the observed TAP responses led to the calculation of the apparent intermediate gas constant, Kp, that characterises adsorption into the mesoporous network and apparent time delay, tapp, that characterises residence time in the mesoporous network. Additionally, FRT has been successfully adapted as an extensive in situ perturbation technique in measuring intraphase diffusion coefficients in the washcoats of the same four monolith samples. The diffusion coefficients obtained by moment-based analysis of TAP responses are larger than the coefficients determined by zero length column (ZLC) analysis of flux response profiles with measured values of the same monolith samples between 20 and 100 °C ranging from 2–5×10-9 m2 s-1 to 4–8×10-10 m2 s-1, respectively. The TAP and FRT data, therefore, provide a range of the lower and upper limits of diffusivity, respectively. The reported activation energies and diffusivities clearly correlate with the difference in the washcoat structure of different monolith samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peatlands are a key component of the global carbon cycle. Chronologies of peatland initiation are typically based on compiled basal peat radiocarbon (14C) dates and frequency histograms of binned calibrated age ranges. However, such compilations are problematic because poor quality 14C dates are commonly included and because frequency histograms of binned age ranges introduce chronological artefacts that bias the record of peatland initiation. Using a published compilation of 274 basal 14C dates from Alaska as a case study, we show that nearly half the 14C dates are inappropriate for reconstructing peatland initiation, and that the temporal structure of peatland initiation is sensitive to sampling biases and treatment of calibrated14C dates. We present revised chronologies of peatland initiation for Alaska and the circumpolar Arctic based on summed probability distributions of calibrated 14C dates. These revised chronologies reveal that northern peatland initiation lagged abrupt increases in atmospheric CH4 concentration at the start of the Bølling–Allerød interstadial (Termination 1A) and the end of the Younger Dryas chronozone (Termination 1B), suggesting that northern peatlands were not the primary drivers of the rapid increases in atmospheric CH4. Our results demonstrate that subtle methodological changes in the synthesis of basal 14C ages lead to substantially different interpretations of temporal trends in peatland initiation, with direct implications for the role of peatlands in the global carbon cycle.