999 resultados para Antepartum fetal death


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human adrenal cortex, involved in adaptive responses to stress, body homeostasis and secondary sexual characters, emerges from a tightly regulated development of a zone-specific secretion pattern during fetal life. Its development during fetal life is critical for the well being of pregnancy, the initiation of delivery, and even for an adequate adaptation to extra-uterine life. As early as from the sixth week of pregnancy, the fetal adrenal gland is characterized by a highly proliferative zone at the periphery, a concentric migration accompanied by cell differentiation (cortisol secretion) and apoptosis in the central androgen-secreting fetal zone. After birth, a strong reorganization occurs in the adrenal gland so that it better fulfills the newborn's needs, with aldosterone production in the external zona glomerulosa, cortisol secretion in the zona fasciculata and androgens in the central zona reticularis. In addition to the major hormonal stimuli provided by angiotensin II and adrenocorticotropin, we have tested for some years the hypotheses that such plasticity may be under the control of the extracellular matrix. A growing number of data have been harvested during the last years, in particular about extracellular matrix expression and its putative role in the development of the human adrenal cortex. Laminin, collagen and fibronectin have been shown to play important roles not only in the plasticity of the adrenal cortex, but also in cell responsiveness to hormones, thus clarifying some of the unexplained observations that used to feed controversies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma-irradiation (gamma-IR) is extensively used in the treatment of hormone-resistant prostate carcinoma. The objective of the present study was to investigate the effects of 60Co gamma-IR on the growth, cell cycle arrest and cell death of the human prostate cancer cell line DU 145. The viability of DU 145 cells was measured by the Trypan blue exclusion assay and the 3(4,5-dimethylthiazol-2-yl)-2,5,diphenyltetrazolium bromide test. Bromodeoxyuridine incorporation was used for the determination of cell proliferation. Cell cycle arrest and cell death were analyzed by flow cytometry. Superoxide dismutase (SOD), specifically CuZnSOD and MnSOD protein expression, after 10 Gy gamma-IR, was determined by Western immunoblotting analysis. gamma-IR treatment had a significant (P < 0.001) antiproliferative and cytotoxic effect on DU 145 cells. Both effects were time and dose dependent. Also, the dose of gamma-IR which inhibited DNA synthesis and cell proliferation by 50% was 9.7 Gy. Furthermore, gamma-IR induced cell cycle arrest in the G2/M phase and the percentage of cells in the G2/M phase was increased from 15% (control) to 49% (IR cells), with a nonsignificant induction of apoptosis. Treatment with 10 Gy gamma-IR for 24, 48, and 72 h stimulated CuZnSOD and MnSOD protein expression in a time-dependent manner, approximately by 3- to 3.5-fold. These data suggest that CuZnSOD and MnSOD enzymes may play an important role in the gamma-IR-induced changes in DU 145 cell growth, cell cycle arrest and cell death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM). This specific maternal-fetal syndrome causes maternal anemia, low birth weight and the death of 62,000 to 363,000 infants per year in sub-Saharan Africa, and thus has a poor outcome for both mother and fetus. However, PAM and non-PAM parasites have been shown to differ antigenically and genetically. After multiple pregnancies, women from different geographical areas develop adhesion-blocking antibodies that protect against placental parasitemia and clinical symptoms of PAM. The recent description of a new parasite ligand encoded by the var2CSA gene as the only gene up-regulated in PAM parasites renders the development of an anti-PAM vaccine more feasible. The search for a vaccine to prevent P. falciparum sequestration in the placenta by eliciting adhesion-blocking antibodies and a cellular immune response, and the development of new methods for evaluating such antibodies should be key priorities in mother-child health programs in areas of endemic malaria. This review summarizes the main molecular, immunological and physiopathological aspects of PAM, including findings related to new targets in the P. falciparum var gene family. Finally, we focus on a new methodology for mimicking cytoadhesion under blood flow conditions in human placental tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to investigate clinical, echocardiographic and electrocardiographic (12-lead resting ECG, 24-h ambulatory ECG monitoring and signal-averaged ECG (SAECG)) parameters in subjects with chronic Chagas' disease in a long-term follow-up as prognostic markers for adverse outcomes. Fifty adult outpatients (34 to 74 years old, 31 females) staged according to Los Andes class I, II or III and complaining of palpitation were enrolled in a longitudinal study. SAECG was analyzed in time and frequency domains and the endpoint was a composite of cardiac death and ventricular tachycardia. During a follow-up of 84.2 ± 39.0 months, 34.0% of the patients developed adverse outcomes (9 cardiac deaths and 11 episodes of ventricular tachycardia). After optimal dichotomization, in a stepwise multivariate Cox-hazard regression model, apical aneurysm (HR = 3.7; 95% CI = 1.2-1.3; P = 0.02), left ventricular ejection fraction <62% (HR = 4.60; 95% CI = 1.39-15.24; P = 0.01) and incidence of ventricular premature contractions >614 per 24 h (hazard ratio = 6.1; 95% CI = 1.7-22.6; P = 0.006) were independent predictors of the composite endpoint. Although a high frequency content in SAECG demonstrated association with the presence of left ventricular dysfunction and myocardial fibrosis, its predictive value for the composite endpoint was not significant. Apical aneurysms, reduced left ventricular function and a high incidence of ventricular ectopic beats over a 24-h period have a strong predictive value for a composite endpoint of cardiac death and ventricular tachycardia in subjects with chronic Chagas' disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of acetylcholine in the central and peripheral nervous systems is well established in adults. Cholinergic modulation of vascular functions and body fluid balance has been extensively studied. In the embryo-fetus, cholinergic receptors are widespread in the peripheral and central systems, including smooth muscle and the epithelial lining of the cardiovascular, digestive, and urinary systems, as well as in the brain. Fetal nicotine and muscarinic receptors develop in a pattern (e.g., amount and distribution) related to gestational periods. Cholinergic mechanisms have been found to be relatively intact and functional in the control of vascular homeostasis during fetal life in utero at least during the last third of gestation. This review focuses on the development of fetal nicotine and muscarinic receptors, and provides information indicating that central cholinergic systems are well developed in the control of fetal blood pressure and body fluid balance before birth. Therefore, the development of cholinergic systems in utero plays an important role in fetal vascular regulation, gastrointestinal motility, and urinary control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria increase their outer and inner membrane permeability to solutes, protons and metabolites in response to a variety of extrinsic and intrinsic signaling events. The maintenance of cellular and intraorganelle ionic homeostasis, particularly for Ca2+, can determine cell survival or death. Mitochondrial death decision is centered on two processes: inner membrane permeabilization, such as that promoted by the mitochondrial permeability transition pore, formed across inner membranes when Ca2+ reaches a critical threshold, and mitochondrial outer membrane permeabilization, in which the pro-apoptotic proteins BID, BAX, and BAK play active roles. Membrane permeabilization leads to the release of apoptogenic proteins: cytochrome c, apoptosis-inducing factor, Smac/Diablo, HtrA2/Omi, and endonuclease G. Cytochrome c initiates the proteolytic activation of caspases, which in turn cleave hundreds of proteins to produce the morphological and biochemical changes of apoptosis. Voltage-dependent anion channel, cyclophilin D, adenine nucleotide translocase, and the pro-apoptotic proteins BID, BAX, and BAK may be part of the molecular composition of membrane pores leading to mitochondrial permeabilization, but this remains a central question to be resolved. Other transporting pores and channels, including the ceramide channel, the mitochondrial apoptosis-induced channel, as well as a non-specific outer membrane rupture may also be potential release pathways for these apoptogenic factors. In this review, we discuss the mechanistic models by which reactive oxygen species and caspases, via structural and conformational changes of membrane lipids and proteins, promote conditions for inner/outer membrane permeabilization, which may be followed by either opening of pores or a rupture of the outer mitochondrial membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed the risk factors associated with death in patients hospitalized for juvenile systemic lupus erythematosus (JSLE) and evaluated the autopsy reports. A total of 57,159 hospitalizations occurred in our institution from 1994 to 2003, 169 of them involving 71 patients with JSLE. The most recent hospitalization of these patients was evaluated. Patients were divided into two groups based on mortality during hospitalization: those who survived (N = 53) and those who died (N = 18). The main causes of hospitalization were JSLE activity associated with infection in 52% and isolated JSLE activity in 44%. Univariate analysis showed that a greater risk of death was due to severe sepsis (OR = 17.8, CI = 4.5-70.9), systemic lupus erythematosus disease activity index (SLEDAI) ³8 (OR = 7.6, CI = 1.1-53.8), general infections (OR = 6.1, CI = 1.5-25), fungal infections (OR = 5.4, CI = 3.2-9), acute renal failure (OR = 5.1, CI = 2.5-10.4), acute thrombocytopenia (OR = 3.9, CI = 1.9-8.4), and bacterial infections (OR = 2.3, CI = 1.2-7.5). Stratified analysis showed that severe sepsis and SLEDAI ³8 were not confounder variables. In the multivariate analysis, logistic regression showed that the only independent variable in death prediction was severe sepsis (OR = 98, CI = 16.3-586.2). Discordance between clinical diagnosis and autopsy was observed in 6/10 cases. Mortality of hospitalized JSLE patients was associated with severe sepsis. Autopsy was important to determine events not detected or doubtful in dead patients and should always be requested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intrahippocampal administration of kainic acid (KA) induces synaptic release of neurotrophins, mainly brain-derived neurotrophic factor, which contributes to the acute neuronal excitation produced by the toxin. Two protein tyrosine kinase inhibitors, herbimycin A and K252a, were administered intracerebroventricularly, in a single dose, to attenuate neurotrophin signaling during the acute effects of KA, and their role in epileptogenesis was evaluated in adult, male Wistar rats weighing 250-300 g. The latency for the first Racine stage V seizure was 90 ± 8 min in saline controls (N = 4) which increased to 369 ± 71 and 322 ± 63 min in animals receiving herbimycin A (1.74 nmol, N = 4) and K252a (10 pmol, N = 4), respectively. Behavioral alterations were accompanied by diminished duration of EEG paroxysms in herbimycin A- and K252a-treated animals. Notwithstanding the reduction in seizure severity, cell death (60-90% of cell loss in KA-treated animals) in limbic regions was unchanged by herbimycin A and K252a. However, aberrant mossy fiber sprouting was significantly reduced in the ipsilateral dorsal hippocampus of K252a-treated animals. In this model of temporal lobe epilepsy, both protein kinase inhibitors diminished the acute epileptic activity triggered by KA and the ensuing morphological alterations in the dentate gyrus without diminishing cell loss. Our current data indicating that K252a, but not herbimycin, has an influence over KA-induced mossy fiber sprouting further suggest that protein tyrosine kinase receptors are not the only factors which control this plasticity. Further experiments are necessary to elucidate the exact signaling systems associated with this K252a effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The balance of body fluids is critical to health and the development of diseases. Although quite a few review papers have shown that several mechanisms, including hormonal and behavioral regulation, play an important role in body fluid homeostasis in adults, there is limited information on the development of regulatory mechanisms for fetal body fluid balance. Hormonal, renal, and behavioral control of body fluids function to some extent in utero. Hormonal mechanisms including the renin-angiotensin system, aldosterone, and vasopressin are involved in modifying fetal renal excretion, reabsorption of sodium and water, and regulation of vascular volume. In utero behavioral changes, such as fetal swallowing, have been suggested to be early functional development in response to dipsogens. Since diseases, such as hypertension, can be traced to fetal origin, it is important to understand the development of fetal regulatory mechanisms for body fluid homeostasis in this early stage of life. This review focuses on fetal hormonal, behavioral, and renal development related to regulation of body fluids in utero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to determine whether lesion of the subthalamic nucleus (STN) promoted by N-methyl-D-aspartate (NMDA) would rescue nigrostriatal dopaminergic neurons after unilateral 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB). Initially, 16 mg 6-OHDA (6-OHDA group) or vehicle (artificial cerebrospinal fluid - aCSF; Sham group) was infused into the right MFB of adult male Wistar rats. Fifteen days after surgery, the 6-OHDA and SHAM groups were randomly subdivided and received ipsilateral injection of either 60 mM NMDA or aCSF in the right STN. Additionally, a control group was not submitted to stereotaxic surgery. Five groups of rats were studied: 6-OHDA/NMDA, 6-OHDA/Sham, Sham/NMDA, Sham/Sham, and Control. Fourteen days after injection of 6-OHDA, rats were submitted to the rotational test induced by apomorphine (0.1 mg/kg, ip) and to the open-field test. The same tests were performed again 14 days after NMDA-induced lesion of the STN. The STN lesion reduced the contralateral turns induced by apomorphine and blocked the progression of motor impairment in the open-field test in 6-OHDA-treated rats. However, lesion of the STN did not prevent the reduction of striatal concentrations of dopamine and metabolites or the number of nigrostriatal dopaminergic neurons after 6-OHDA lesion. Therefore, STN lesion is able to reverse motor deficits after severe 6-OHDA-induced lesion of the nigrostriatal pathway, but does not protect or rescue dopaminergic neurons in the substantia nigra pars compacta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of the caspase-9-based artificial "death switch" as a safety measure for gene therapy based on the erythropoietin (Epo) hormone was tested in vitro and in vivo using the chemical inducer of dimerization, AP20187. Plasmids encoding the dimeric murine Epo, the tetracycline-controlled transactivator and inducible caspase 9 (ptet-mEpoD, ptet-tTAk and pSH1/Sn-E-Fv’-Fvls-casp9-E, respectively) were used in this study. AP20187 induced apoptosis of iCasp9-modified C2C12 myoblasts. In vivo, two groups of male C57BI/6 mice, 8-12 weeks old, were injected intramuscularly with 5 µg/50 g ptet-mEpoD and 0.5 µg/50 g ptet-tTAk. There were 20 animals in group 1 and 36 animals in group 2. Animals from group 2 were also injected with the 6 µg/50 g iCasp9 plasmid. Seventy percent of the animals showed an increase in hematocrit of more than 65% for more than 15 weeks. AP20187 administration significantly reduced hematocrit and plasma Epo levels in 30% of the animals belonging to group 2. TUNEL-positive cells were detected in the muscle of at least 50% of the animals treated with AP20187. Doxycycline administration was efficient in controlling Epo secretion in both groups. We conclude that inducible caspase 9 did not interfere with gene transfer, gene expression or tetracycline control and may be used as a safety mechanism for gene therapy. However, more studies are necessary to improve the efficacy of this technique, for example, the use of lentivirus vector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the degeneration of post-mitotic ganglion cells in ex-vivo neonatal retinal explants following axon damage. Ultrastructural features of both apoptosis and autophagy were detected. Degenerating cells reacted with antibodies specific for activated caspase-3 or -9, consistent with the presence of caspase activity. Furthermore, peptidic inhibitors of caspase-9, -6 or -3 prevented cell death (100 µM Ac-LEDH-CHO, 50 µM Ac-VEID-CHO and 10 µM Z-DEVD-fmk, respectively). Interestingly, inhibition of autophagy by 7-10 mM 3-methyl-adenine increased the rate of cell death. Immunohistochemistry data, caspase activation and caspase inhibition data suggest that axotomy of neonatal retinal ganglion cells triggers the intrinsic apoptotic pathway, which, in turn, is counteracted by a pro-survival autophagic response, demonstrated by electron microscopy profiles and pharmacological autophagy inhibitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-10 (IL-10) appears to be the key cytokine for the maintenance of pregnancy and inhibits the secretion of inflammatory cytokines such as tumor necrosis factor-α (TNF-α). However, there are no studies evaluating the profile of these cytokines in diabetic rat models. Thus, our aim was to analyze IL-10 and TNF-α immunostaining in placental tissue and their respective concentrations in maternal plasma during pregnancy in diabetic rats in order to determine whether these cytokines can be used as predictors of alterations in the embryo-fetal organism and in placental development. These parameters were evaluated in non-diabetic (control; N = 15) and Wistar rats with streptozotocin (STZ)-induced diabetes (N = 15). At term, the dams (100 days of life) were killed under anesthesia and plasma and placental samples were collected for IL-10 and TNF-α determinations by ELISA and immunohistochemistry, respectively. The reproductive performance was analyzed. Plasma IL-10 concentrations were reduced in STZ rats compared to controls (7.6 ± 4.5 vs 20.9 ± 8.1 pg/mL). The placental scores of immunostaining intensity did not differ between groups (P > 0.05). Prevalence analysis showed that the IL-10 expression followed TNF-α expression, showing a balance between them. STZ rats also presented impaired reproductive performance and reduced plasma IL-10 levels related to damage during early embryonic development. However, the increased placental IL-10 as a compensatory mechanism for the deficit of maternal regulation permitted embryo development. Therefore, the data suggest that IL-10 can be used as a predictor of changes in the embryo-fetal organism and in placental development in pregnant diabetic rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cocaine is a widely used drug and its abuse is associated with physical, psychiatric and social problems. Abnormalities in newborns have been demonstrated to be due to the toxic effects of cocaine during fetal development. The mechanism by which cocaine causes neurological damage is complex and involves interactions of the drug with several neurotransmitter systems, such as the increase of extracellular levels of dopamine and free radicals, and modulation of transcription factors. The aim of this review was to evaluate the importance of the dopaminergic system and the participation of inflammatory signaling in cocaine neurotoxicity. Our study showed that cocaine activates the transcription factors NF-κB and CREB, which regulate genes involved in cellular death. GBR 12909 (an inhibitor of dopamine reuptake), lidocaine (a local anesthetic), and dopamine did not activate NF-κB in the same way as cocaine. However, the attenuation of NF-κB activity after the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, suggests that the activation of NF-κB by cocaine is, at least partially, due to activation of D1 receptors. NF-κB seems to have a protective role in these cells because its inhibition increased cellular death caused by cocaine. The increase in BDNF (brain-derived neurotrophic factor) mRNA can also be related to the protective role of both CREB and NF-κB transcription factors. An understanding of the mechanisms by which cocaine induces cell death in the brain will contribute to the development of new therapies for drug abusers, which can help to slow down the progress of degenerative processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SEARCH-RIO study prospectively investigated electrocardiogram (ECG)-derived variables in chronic Chagas disease (CCD) as predictors of cardiac death and new onset ventricular tachycardia (VT). Cardiac arrhythmia is a major cause of death in CCD, and electrical markers may play a significant role in risk stratification. One hundred clinically stable outpatients with CCD were enrolled in this study. They initially underwent a 12-lead resting ECG, signal-averaged ECG, and 24-h ambulatory ECG. Abnormal Q-waves, filtered QRS duration, intraventricular electrical transients (IVET), 24-h standard deviation of normal RR intervals (SDNN), and VT were assessed. Echocardiograms assessed left ventricular ejection fraction. Predictors of cardiac death and new onset VT were identified in a Cox proportional hazard model. During a mean follow-up of 95.3 months, 36 patients had adverse events: 22 new onset VT (mean±SD, 18.4±4‰/year) and 20 deaths (26.4±1.8‰/year). In multivariate analysis, only Q-wave (hazard ratio, HR=6.7; P<0.001), VT (HR=5.3; P<0.001), SDNN<100 ms (HR=4.0; P=0.006), and IVET+ (HR=3.0; P=0.04) were independent predictors of the composite endpoint of cardiac death and new onset VT. A prognostic score was developed by weighting points proportional to beta coefficients and summing-up: Q-wave=2; VT=2; SDNN<100 ms=1; IVET+=1. Receiver operating characteristic curve analysis optimized the cutoff value at >1. In 10,000 bootstraps, the C-statistic of this novel score was non-inferior to a previously validated (Rassi) score (0.89±0.03 and 0.80±0.05, respectively; test for non-inferiority: P<0.001). In CCD, surface ECG-derived variables are predictors of cardiac death and new onset VT.