986 resultados para Analytic-numerical solutions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although classic bankruptcy problems take into account a single claims vector, Pulido et al. (2008) show that there are real bankruptcy situations where agents face more than one reference vector. In particular, they consider the claims and an additional reference vector. To analyze these situations, they propose the extreme and the diagonal approaches. Nonetheless, the former approach depends on the order of the vectors: if we interchange the claims and the reference vectors, the result changes. Moreover their study is limited to the case in which the reference vector is lower than the claims vector. In the present note, we propose an extension that solves these short- comings by introducing the idea of impartiality. Keywords: bankruptcy problems; reference point; compromise solution; impartiality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shallow upland drains, grips, have been hypothesized as responsible for increased downstream flow magnitudes. Observations provide counterfactual evidence, often relating to the difficulty of inferring conclusions from statistical correlation and paired catchment comparisons, and the complexity of designing field experiments to test grip impacts at the catchment scale. Drainage should provide drier antecedent moisture conditions, providing more storage at the start of an event; however, grips have higher flow velocities than overland flow, thus potentially delivering flow more rapidly to the drainage network. We develop and apply a model for assessing the impacts of grips on flow hydrographs. The model was calibrated on the gripped case, and then the gripped case was compared with the intact case by removing all grips. This comparison showed that even given parameter uncertainty, the intact case had significantly higher flood peaks and lower baseflows, mirroring field observations of the hydrological response of intact peat. The simulations suggest that this is because delivery effects may not translate into catchment-scale impacts for three reasons. First, in our case, the proportions of flow path lengths that were hillslope were not changed significantly by gripping. Second, the structure of the grip network as compared with the structure of the drainage basin mitigated against grip-related increases in the concentration of runoff in the drainage network, although it did marginally reduce the mean timing of that concentration at the catchment outlet. Third, the effect of the latter upon downstream flow magnitudes can only be assessed by reference to the peak timing of other tributary basins, emphasizing that drain effects are both relative and scale dependent. However, given the importance of hillslope flow paths, we show that if upland drainage causes significant changes in surface roughness on hillslopes, then critical and important feedbacks may impact upon the speed of hydrological response. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces cerevisiae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of a two-dimensional exactly solvable model, the dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model in the region where the outgoing modes arise from the horizon with Planck-order frequencies. This occurs early in the evaporation process, and the resulting physical picture is unconventional. The theory predicts that black holes will only radiate out an energy of Planck mass order, stabilizing after a transitory period. The continuation from a regime without black hole formationaccessible in the 1+1 gravity theory consideredis implicit in an S-matrix approach and suggests in this way a possible solution to the problem of information loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper is devoted to the results of experimental research undertaken into photocatalytical oxidation (PCO) of aqueous solutions of de-icing agents and aqueous extract of jet fuel. The report consists of introduction, literature review, description of materials and methods, discussion of results and conclusions. TiO2 was selected as a photocatalyst for the experiments with synthetic solutions of ethylene glycol, 2-ethoxyethanol and aqueous extract of jet fuel. To explain the PCO mechanisms affecting certain behaviour of de-icing agent under distinctive conditions, the following factors were studied: the impact of initial concentration of pollutant, the role of pH, the presence of tert-butanol as OH·-radicals scavenger and mineral admixtures. PCO under solar radiation performed in two ways: catalysed by irradiated TiO2 slurry or by TiO2 attached to buoyant hollow glass micro-spheres. Special attention was paid to the energy-saving PCO with reduced intensity mixing of the slurry. The effect of PCO was assessed by determination of residual chemical oxygen demand of solution (COD) and by measuring of concentration of glycols. The PCO process efficiency was assumed to be dependent on the TiO2 suspension fractional composition. Thus, the following effects of solutions’ media were viewed: presence of organic admixtures, pH influence, mixing mode during the PCO. The effects of mineral admixtures - Ca2+, Fe3+/2+, Mn2+, SO42- - that are often present in natural and wastewater systems or produced during the degradation of organic pollutants and which can affect the rate of PCO of de-icing agents, were also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämä diplomityö tutkii turvallisia etäyhteystapoja yritysverkkoihin. Samanaikasesti kuin Internettiin liitetyt langattomat verkot, kuten langattomat lähiverkot ja pakettikytkentäiset matkapuhelinverkot, tulevat yhä yleisemmiksi, mahdollisuus etäyhteksien luomiseen näiden verkkojen kautta tulee yhä suositummaksi. Vaikka tietoverkot kehittyvät, pysyvät niitä uhkaavat yleisluontoiset uhat samoina. IP pohjaiset VPN-verkot ovat sopiva tapa suojata Internetin ylitse tapahtuvia etäyhteksiä. Eri VPN-ratkaisuja on kuitenkin tarjolla laaja valikoima. Oikean tyyppisen VPN-ratkaisun valinta on kriittistä, jotta yrityksen etäyhteystarpeet saadaan täytettyä. Diplomityö esittelee eräänä vaihtoehtona miten Pocket PC 2002 PDA laitetta ja Windows XP Professional käyttöjärjestelmää voidaan käyttää edullisen VPN ratkaisun toteuttamiseen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Logistiikkapalveluiden markkinat ovat viime vuosina muuttuneet. Kilpailtu toimiala ja asiakasvaatimusten muuttuminen ovat pakottaneet yritykset pyrkimään entistä tehokkaampaan jakeluketjuun. Työn tarkoituksena oli tutkia sähköisten asiakasliittymien toimivuutta asiakkaan näkökulmasta Euro Express tuotannossa ja prosessissa. Tarkoituksena oli selvittää eri sidosryhmien vaatimukset prosessille huomioiden sähköisen liiketoiminnan tuomat edut ja ominaispiirteet. Tavoitteena oli kuvata olemassa oleva prosessi ja tutkia prosessin rajapinnat –asiakas, tuotanto ja ulkoiset sidosryhmät. Tutkielmassa sähköisten ratkaisujen ominaispiirteet on käyty läpi ja tulevaisuuden kehitysnäkökulmista keskusteltu. Kehittyneiden tietoteknisten ratkaisujen avulla jatkuva prosessien uudistaminen (Business Process Reengineering) on mahdollista. Yleisesti epäolennaisuudet asiakasrajapinnassa, informaation kulussa ja yhteyksissä eri järjestelmien välillä aiheuttavat ongelmia sähköisten ratkaisujen toteuttamisessa. Tulevaisuudessa logistiikka yritykset ottavat entistä enemmän käyttöönsä uudenaikaisia teknologisia ratkaisuja tilaukseen, tuotantoon ja asiakaspalveluun. Näiden uudenlaisten ratkaisujen kehittämisestä on hyötyä sekä käyttäjälle että tarjoajalle, mutta ne ovat myös pakollisia palveluntarjoajalle kehittyäkseen markkinoilla. Tulevaisuudessa kilpailun tiivistyessä ja asiakkaiden vaatimusten kasvaessa on kiinnitettävä entistä suurempaa huomiota koko prosessiketjun toimivuuteen. Uudet teknologiset ratkaisut ja niiden käyttäminen tehokkaasti tuovat yrityksille kilpailuetuja, joita ei muuten olisi saavutettavissa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tutkielman tavoitteena oli suunitella markkina-analyysi ja sitä käyttäen määritellä Danzasin Solutions liiketoimintayksikön mahdollisuuksia laajentaa toimintaansa Suomen terveydenhuolto/ lääke- ja elektroniikka/ telekommunikaatiosektoreilla. Danzas Solutions toimisi logistiikkaintegraattorina toimittamalla kokonaisvaltaisia logistisia ratkaisuja. Tutkimus tehtiin haastattelemalla neljää Danzasin asiakasta. Mahdollisimman laajan ja yleistettävän tuloksen saamiseksi haastateltavat valitiin logistiikan ulkoistamisasteeltaan vaihteleviksi. Tutkimus tehtiin ensin tutkimalla sekundääristä informaatiota markkinoilta ja täydentämällä sitä haastatteluista saadulla kvalitatiivisella primääri informaatiolla ja case yrityksen sisäisellä analyysillä. Painopiste tutkimuksessa oli selvittää yritysten ulkoistamiseen ja logistiikkakumppanin valintaan vaikuttavia kriteereitä. Logistiikkaintegraattorille suurimmat mahdollisuudet löytyvät elektroniikka/ telekommunikaatiosektorilta. Logistiikka tällä sektorilla on vaativaa ja yrityksillä ei ole resursseja hallita sitä itse. Terveydenhuolto/ lääkesektorilla yrityksillä on yleensä muut keinot jakeluketjun hallintaan ja ne eivät tarvitse logistiikkaintegraattorin palveluita.