988 resultados para Anaerobic Conditions
Resumo:
Highly luminescent and monodisperse CdS nanocrystals (see Figure) have been synthesized using a two-phase approach. The synthesis of CdS nanocrystals at the liquid-liquid interface was easy, safe, and highly reproducible, and the reaction conditions were mild and controllable.
Resumo:
By using a novel high-pressure, high-temperature method, perovskite oxides of La1-xNaxTiO3 (x = 0.05, 0.1-0.8) with mixed valence state were synthesized. XRD analysis shows a cubic cell for the samples. Cell volumes of the samples with 0.1 less than or equal to x less than or equal to 0.5 decreases as x increases, and the cell Volume for x = 0.05 is smaller than that for x = 0.1. XPS of surface and EPR measurements indicate that Ti ions are of mixed valence of +3 and +4 and that A-cations vacancies exist in the samples. As x increases, the amount of Ti3+ ions decreases and the amount of A-cations vacancies increases. The valence state of Ti ions can be altered by changing both pressure and temperature. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The catalyst system neodymium phosphonate Nd(P-507)(3)/H2O/Al(i-Bu)(3) for the polymerization of styrene was examined. Effects of the addition order of the catalyst components, catalyst aging time and aging temperature on the catalyst activity and the polymer characteristics were investigated. The catalyst activity for isospecific polymerization of styrene increases with aging time and reaches the maximum with a catalyst aged for 45 min at 70 degrees C. The aging time that the catalyst needs to reach the highest activity for isospecific polymerization decreases with increasing aging temperature. The preformed catalyst and the in situ catalyst were compared with respect to the kinetic behavior of the styrene polymerization and the polymer characteristics.
Resumo:
Gas-phase ion-molecule reactions of buckminsterfullerene (C-60) with the ion systems generated from the self-chemical ionization of alkyl methyl ethers (CH3OR, R = n-C2H5, n-C3H7, n-C4H9) were studied in the ion source of a mass spectrometer. The adduct cation [C60C2H5O](+) and protonated molecule [C60H](+) were observed as the major products. The former adduct ion was produced by the reactions of C-60 with the methoxymethyl ion [CH3OCH2](+), and the latter resulted from the proton transfer reactions from protonated alkyl methyl ethers to C-60 It is suggested that the [3+2] cycloadduct to a 6-6 bond of C-60 (a C-C bond common to two annulated six-membered rings) is the most favorable structure among the probable isomers of [C60C2H5O](+). (C) 1998 John Wiley & Sons, Ltd.
Resumo:
Ion-molecule reactions of four isomeric cyclopropane derivatives were investigated under chemical ionization(CI) conditions, using methane, acetone and vinyl acetate as reagent gases, The methane positive-ion CI mass spectra of each of two isomer pairs 1,2 and 3,4 are identical, and so are the collision-induced dissociation (CTD) spectra of the protonated molecules of each of the two isomer pairs, The protonation reactions for the isomer pairs 1,2 and 3,4 occurred on the sites of the carboxyl groups and the R groups, respectively, Differences between isomers 1 and 2 are observed in their acetone (A) positive-ion CI mass spectra and in the CID spectra of their adduct ions ([M+H+A](+)), The adduct ions of compounds 2, 3 and 4 with protonated acetone and with protonated acetone dimer are observed in their CI mass spectra, However, only the adduct ions of compound 1 with protonated acetone appear in its CI mass spectrum, The protonated dimers of each of the four compounds are found in their vinyl acetate positive-ion CI mass spectra, and the CID spectra of these dimers for isomers 1 and 2 can also reflect their stereostructural difference. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
The complex fluorides LiYF4, KYF4, BaBeF4 and AYF(4)Eu(x) (A = Li, K) are hydrothermally synthesized at 140-240 degrees C and characterized by powder X-ray diffraction, thermogravimetric analysis, IR spectroscopy, scanning electron microscopy and luminescence measurements.
Resumo:
The complex fluorides, LiBaF3 and KMgF3; which are isostructural with perovskite phases, are hydrothermally synthesized at 120-240 degrees C and characterized by powder X-ray diffraction, thermogravimetric analysis, IR spectroscopy and scanning electron microscopy.
Resumo:
As a typical example of a polymer degraded by radiation, the radiation stability of PTFE was observed to depend upon irradiation conditions. Increases in irradiation temperature and crystallinity were found to increase its radiation stability whereas increase in the concentration of oxygen in the system over a certain range was observed to have little effect on radiation-induced reactions of PTFE as measured by changes in number-average molecular weight, melting temperature and crystallinity.
Resumo:
A tri-phasic catalytic system consisting of aqueous hydrogen peroxide, benzyl alcohol and a solid catalyst such as tungsten trioxide has been proved effective for the oxidation of benzyl alcohol in the presence of cetyl trimethyl aniline bromide (CTMAB). At first, the oxide reacts with CTMAB to form a complex, which can be oxidized by aqueous hydrogen peroxide to form a peroxide which effectively oxidizes benzyl alcohol.
Resumo:
The hydrogenation of alkali metals using lanthanide trichloride and naphthalene as catalyst has been studied. LnCl3(Ln = La, Nd, Sm, Dy, Yb) and naphthalene can catalyze the hydrogenation of sodium under atmospheric pressure and 40-degrees-C to form sodium hydride. The activities of lanthanide trichlorides are in the following order: LaCl3 > NdCl3 > SmCl3 > DyCl3 > YbCl3. Although lithium proceeds in the same catalytic reaction, the kinetic curve of the lithium hydrogenation is different from that of sodium. Lanthanide trichlorides display no catalytic effect on the hydrogenation of potassium in presence of naphthalene. The mechanism of this reaction has been studied and it is suggested that the anion-radical of alkali metal naphthalene complexes may be the intermediate for the hydrogenation of alkali metals and the function of LnCl3 is to catalyze the hydrogenation of the intermediate. The products are porous solids with high specific surface area (83 m2/g for NaH) and pyrophoric in air. They are far more active than the commercial alkali metal hydrides. The combination of these hydrides with some transition metal complexes exhibits high catalytic activity for the hydrogenation of olefins.
Resumo:
The dependence of morphology and properties on film-forming conditions is described for the symmetrically substituted copper tetra-4-(2, 4-di-t-amylphenoxy) phthalocyanine (tapCuPc) Langmuir-Blodgett (LB) films. The effects of LB film-forming conditions (such as the surface pressure, pH value and the concentrations of spreading solutions) on film quality were studied with the help of a UV-visible spectrophotometer and a transmission electron microscope. Transmission electron microscopy photographs of the surface morphology of tapCuPc LB films show that a smooth and homogeneous surface structure can be obtained under optimum film-forming conditions.