983 resultados para Análisis didáctico
Resumo:
La presente investigación surge en el programa “perfeccionamiento en matemática para profesores de enseñanza media” realizado en el IUFM le Mirail, Universidad de Toulouse, Francia. El estudio consiste en el diseño de una propuesta didáctica para el aprendizaje de la ecuación vectorial de una recta en el espacio, en estudiantes de 16 a 18 años, el interés nace por la incorporación de estos temas en el curriculum nacional. Para el diseño de la propuesta se utiliza elementos de la Teoría Antropológica de lo Didáctico (TAD), donde se entenderá como organización matemática, a un conjunto de tipos de tareas, de técnicas o procedimientos para resolver estas tareas y de definiciones, propiedades y teoremas que permitan describir y justificar la resolución de la tarea. Entre los elementos que aportan en el surgimiento de la organización matemática, se distinguen, tipos de tareas como, establecer si puntos del plano o el espacio son colineales y determinar las condiciones para que un tercer punto sea colineal a dos puntos dados, en el plano o en el espacio.
Resumo:
Este trabajo aporta elementos que robustecen la socioepistemología propuesta sobre lo periódico en la que la predicción es la práctica asociada a la construcción del conocimiento matemático. Además de trabajar en un contexto de funciones periódicas distancia-tiempo, se abordan otros contextos como las sucesiones periódicas de números y de figuras.
Resumo:
Se presenta el manejo de la prensa como medio didáctico para lograr que los alumnos vean a la Matemática inmersa en su vida cotidiana, despertando en ellos su interés en la materia, logrando transformar noticias, comentarios, anuncios, etc., de la prensa, en problemas para aplicar en ellos el quehacer matemático: cómo enfrentarlos, la búsqueda de vías de solución y la resolución exitosa de los mismos. Utilizar los medios de información del ámbito social como recurso didáctico nos permitirá cambiar esquemas tradicionales de la enseñanza por métodos y técnicas de participación activa bajo un enfoque constructivista, el objetivo del trabajo es: Ofrecer indicaciones metodológicas para propiciar en los estudiantes la utilización de modelos matemáticos en situaciones prácticas, a través del uso de la prensa.
Resumo:
Frecuentemente, al iniciar el estudio de conceptos básicos del análisis matemático, nos encontramos con dificultades y errores relacionados con la división por cero. La necesidad de dar respuesta a esta problemática, da origen a este trabajo que retoma las respuestas dadas por un grupo de alumnos de la escuela media que constituyen las evidencias sobre las cuales se inicia el proceso de investigación que se encuentra en su primera etapa de realización y cuyos resultados parciales se exponen aquí. Se enmarca la tarea en la perspectiva socioepistemológica indagando en los orígenes y evolución de este conocimiento, analizando los alcances y efectos del discurso matemático escolar vigente en la educación media y contemplando las concepciones de los alumnos acerca del cero y la división construidas en ambientes escolarizados y no escolarizados.
Resumo:
En este curso se pretende realizar análisis de funciones a partir de sus representaciones gráficas. Se parte del desarrollo de actividades de lectura, interpretación y construcción de gráficas de funciones sobre la base de un ambiente rico en significados visuales. Se desarrollarán actividades que requerirán procesos de conversión y tratamiento de diferentes sistemas semióticos de representación como el gráfico, verbal y analítico, pero predominantemente el gráfico. La validez de las argumentaciones que permitirán dar respuesta a los cuestionamientos incluidos en estas actividades, será de naturaleza eminentemente visual.
Resumo:
Este documento contiene los aspectos esenciales de una conferencia dictada por el autor en el marco de las actividades de la RELME 16 celebrada en la Habana, Cuba. El tema se refiere a las concepciones alternativas relativas al análisis de funciones en ambientes gráficos. En especial se analizan la importancia de esas concepciones en tanto procesos cognoscitivos que interfieren en los procesos de aprendizaje, las posibilidades de ser cambiadas por otras aceptables y su permanencia en la mente de los estudiantes a pesar de emplear diseños instruccionales para removerlas.
Resumo:
En este trabajo presentamos un análisis estadístico del Test de Conocimientos Previos de Matemáticas (TCPM) diseñado para medir el estado inicial de destrezas y conocimientos básicos en matemáticas de los alumnos ingresantes a carreras científico-tecnológicas de la Facultad de Ciencias Físico, Matemáticas y Naturales de la Universidad Nacional de San Luis. El objetivo de la investigación está centrado en observar el diagnóstico utilizado, con miras a una eventual utilización posterior. Para determinar la bondad de la prueba realizamos un análisis de la calidad, discriminación e índice de dificultad de los ítems, así como de la validez y confiabilidad del diagnóstico, para este análisis estadístico empleamos los programas TestGraf y SPSS. El test se aplicó a 698 estudiantes ingresantes a la Universidad en el ciclo lectivo 2002. De la investigación pudimos inferir que el diagnóstico resultó: difícil para la población de aplicación; de confiabilidad aceptable, y de buena calidad de items, con variada dificultad y aceptable discriminación.
Resumo:
Analizamos los registros de representación semiótica y las correspondientes funciones semióticas implícitos en la solución de dos problemas propuestos para la Educación Polimodal, que consideramos pueden ser utilizados en el proceso de enseñanza-aprendizaje de la noción resolución numérica de ecuaciones polinómicas, contemplada en los C.B.C. del mencionado nivel. Las representaciones juegan un rol fundamental en los procesos de construcción de conceptos, por lo que son importantes en la enseñanza, aprendizaje y comunicación del conocimiento matemático (Hitt, 1996). Con este análisis a priori, pretendemos ver cuáles de los registros de representación son de mayor peso para incorporar o darle sentido al concepto: Funciones polinómicas. Raíces de las correspondientes ecuaciones. Tratamos de responder a las preguntas: ¿Cuáles son los distintos registros de representación puestos en juego en la solución de cada problema?. ¿Cómo se suceden?. ¿Cómo aparecen y cuál es la necesidad de su conversión?. ¿Cómo se coordinan en la actividad conceptual? ¿En qué medida la presentación del tema desde una situación problemática es beneficiosa para incorporar y dar sentido a la determinación de las raíces de una ecuación polinómica?.