985 resultados para Aluminium in Cochin estuary


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two zinc-based alloys of high aluminium content, Super Cosmal alloy containing 60% Al, 6% Si, 1% Cu, 0.3% Mn and HAZCA alloy containing 60% Al, 8% Si, 2% Cu, 0.06% Mg were produced by sand casting. Foundry characteristics in particular, fluidity, mode of solidification and feeding ability were examined. Metallographic analysis of structures was carried out using optical and scanning electron microscopy and their mechanical properties were determined using standard techniques. Dry wear characteristics were determined using a pin-on-disc test, and boundary-lubricated wear was studied using full bearing tests. Results from casting experiments were evaluated and compared with the behaviour of a standard ZA-27 alloy and those from tribological tests with both ZA-27 alloy and a leaded tin-bronze (SAE660) under the same testing conditions. The presence of silicon was beneficial, reducing the temperature range of solidification, improving feeding efficiency and reducing gravity segregation of phases. Use of chills and melt degassing was found necessary to achieve soundness and enhanced mechanical properties. Dry wear tests were performed against a steel counterface for sliding speeds of 0.25, 0.5, 1.0 and 2 m/s and for a range of loads up to 15 kgf. The high aluminium alloys showed wear rates as low as those of ZA-27 at speeds of 0.25 and 0.5 m/s for the whole range of applied loads. ZA-27 performed better at higher speeds. The build up of a surface film on the wearing surface of the test pins was found to be responsible for the mild type of wear of the zinc based alloys. The constitution of the surface film was determined as a complex mixture of aluminium, zinc and iron oxides and metallic elements derived from both sliding materials. For full bearing tests, bushes were machined from sand cast bars and were tested against a steel shaft in the presence of a light spindle oil as the lubricant. Results showed that all zinc based alloys run-in more rapidly than bronze, and that wear in Super Cosmal and HAZCA alloys after prolonged running were similar to those in ZA-27 bearings and significantly smaller than those of the bronze.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fibre Bragg Grating (FBG) array sensors have been successfully embedded in aluminium alloy matrix by ultrasonic consolidation (UC) technique. The temperature and loading responses of the embedded FBG arrays have been systematically characterised. The embedded grating sensors exhibit an average temperature sensitivity of ~36pm/°C, which is three times higher than that of normal FBGs, and a loading responsivity of ~0.1nm/kg within the dynamic range from 0kg to 3kg. This initial experiment clearly demonstrates that FBG array sensors can be embedded in metal matrix together with other passive and active fibres to fabricate smart materials to monitor the operation and health of engineering structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fatigue crack growth in high strength aluminium alloy 7150 commercial plate material has been studied in both laboratory air and acidified aqueous salt solution. The aggressive aqueous environment enhanced fatigue crack growth rates by up to an order in magnitude compared to laboratory air. The enhancement in fatigue crack growth rate was accompanied by evidence of embrittlement in the crack path, involving both brittle intergranular and transgranular failure modes. Both the enhancement of fatigue crack growth rates and the extent of intergranular growth modes are dependent on cyclic frequency which, along with the absence of a similar frequency effect in a spray-formed version of the material with a significantly different grain structure, supports a mechanism of grain boundary hydrogen diffusion for intergranular corrosion fatigue crack growth. The convergence of corrosion fatigue crack growth rates at high ΔK in both spray-formed and conventional plate materials coincides with the operation of identical transgranular corrosion fatigue modes dependent on strain-controlled hydrogen diffusion ahead of the crack tip. © 1997 Acta Metallurgica Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of residual stresses, induced by cold water quenching, on the morphology of fatigue crack fronts has been investigated in a powder metallurgy 8090 aluminium alloy, with and without reinforcement in the form of 20 wt-%SiC particles. Residual stress measurements reveal that the surface compressive stresses developed in these materials are significantly greater than in conventional metallurgy ingot 8090, because surface yielding occurs on quenching. The yield stresses of the powder route materials are greater than those of ingot produced 8090 and hence greater surface stresses can be maintained. In fatigue, severe crack front bowing is observed in the powder formed materials as a result of the reduction of the R ratio (minimum load/maximum load) by the compressive residual stresses at the sides of the specimen, causing premature crack closure and hence reducing the local driving force for fatigue crack growth ΔKeff. This distortion of the crack fronts introduces large errors into measurements of crack growth rate and threshold values of ΔK.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fatigue crack initiation and subsequent short crack growth behaviour of 2014-5wt%SiC aluminium alloy composites has been examined in 4-point bend loading using smooth bar specimens. The growth rates of long fatigue cracks have also been measured at different stress ratios using pre-cracked specimens. The distributions of SiC particles and of coarse constituent particles in the matrix (which arise as a result of the molten-metal processing and relatively slow cooling rate) have been investigated. Preferential crack initiation sites were found to be SiC-matrix interfaces, SiC particles associated with constituent particles and the coarse constituent particles themselves. For microstructurally short cracks the dispersed SiC particles also act as temporary crack arresters. In the long crack growth tests, higher fatigue crack growth rates were obtained than for monolithic alloys. This effect is attributed to the contribution of void formation, due to the decohesion of SiC particles, to the fatigue crack growth process in the composite. Above crack depths of about 200 μm 'short' crack growth rates were in good agreement with the long crack data, showing a Pris exponent, m = 4 in both cases. For the long crack and short crack growth tests little effect of specimen orientation and grain size was observed on fatigue crack growth rates, but, specimen orientation affected the toughness. No effect of stress ratio in the range R = 0.2-0.5 was seen for long crack data in the Paris region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fatigue behaviour in SiC-particulate-reinforced aluminium alloy composites has been briefly reviewed. The improved fatigue life reported in stress-controlled test results from the higher stiffness of the composites; therefore it is generally inferior to monolithic alloys at a constant strain level. The role of SiC particulate reinforcement has been examined for fatigue crack initiation, short-crack growth and long-crack growth. Crack initiation is observed to occur at matrix-SiC interface in cast composites and either at or near the matrix-SiC interface or at cracked SiC particles in powder metallurgy processed composites depending on particle size and morphology. The da/dN vs ΔK relationship in the composites is characterized by crack growth rates existing within a narrow range of ΔK and this is because of the lower fracture toughness and relatively high threshold values in composites compared with those in monolithic alloys. An enhanced Paris region slope attributed to the monotonic fracture contribution are reported and the extent of this contribution is found to depend on particle size. The effects of the aging condition on crack growth rates and particle size dependence of threshold values are also treated in this paper. © 1991.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fatigue crack growth behaviour in a 15 wt% SiC particulate reinforced 6061 aluminium alloy has been examined using pre-cracked specimens. Crack initiation and early growth of fatigue cracks in smooth specimens has also been investigated using the technique of periodic replication. The composite contained a bimodal distribution of SiC particle sizes, and detailed attention was paid to interactions between the SiC particles and the growing fatigue-crack tip. At low stress intensity levels, the proportion of coarse SiC particles on the fatigue surfaces was much smaller than that on the metallographic sections, indicating that the fatigue crack tends to run through the matrix avoiding SiC particles. As the stress intensity level increases, the SiC particles ahead of the growing fatigue crack tip are fractured and the fatigue crack then links the fractured particles. The contribution of this monotonic fracture mode resulted in a higher growth rate for the composite than for the unreinforced alloy. An increase in the proportion of cracked, coarse SiC particles on the fatigue surface was observed for specimens tested at a higher stress ratio.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study has been made of serrated yielding in two commercial Al-Zn-Mg alloys in the as-quenched condition. The different serration types produced in the two alloys and the shear failure mechanism observed in both notched-bend and tensile testing are related to the mechanisms of dynamic strain ageing occurring during the test. An estimate of 19.7 kJ/mole for the activation energy for exchange of a solute atom and a vacancy in Al-6.2 wt% Zn, 2.5 wt% Mg has been made. © 1981.