999 resultados para Altichiero, active 1303-1313.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Letter describes the synthesis and SAR of two mGluR4 positive allosteric modulator leads, 6 and 7. VU001171 (6) represents the most potent (EC50 = 650 nM), efficacious (141% Glu Max) and largest fold shift (36-fold) of any mGluR4 PAM reported to date. However, this work highlights the challenges in hit-to-lead for mGluR4 PAMs, with multiple confirmed HTS hits displaying little or no tractable SAR. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein we disclose the synthesis and SAR of a series of 4-(phenylsulfamoyl)phenylacetamide compounds as mGlu(4) positive allosteric modulators (PAMs) that were identified via a functional HTS. An iterative parallel approach to these compounds culminated in the discovery of VU0364439 (11) which represents the most potent (19.8 nM) mGlu(4) PAM reported to date. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type I galactosemia results from reduced galactose 1-phosphate uridylyltransferase (GALT) activity. Signs of disease include damage to the eyes, brain, liver, and ovaries. However, the exact nature and severity of the pathology depends on the mutation(s) in the patient's genes and his/her environment. Considerable enzymological and structural knowledge has been accumulated and this provides a basis to explain, at a biochemical level, impairment in the enzyme in the more than 230 disease-associated variants, which have been described. The most common variant, Q188R, occurs close to the active site and the dimer interface. The substitution probably disrupts both UDP-sugar binding and homodimer stability. Other alterations, for example K285N, occur close to the surface of the enzyme and most likely affect the folding and stability of the enzyme. There are a number of unanswered questions in the field, which require resolution. These include the possibility that the main enzymes of galactose metabolism form a supramolecular complex and the need for a high resolution crystal structure of human GALT. (C) 2011 IUBMB IUBMB Life, 63(11): 949-954, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial energy distributions of beams of protons accelerated by ultrahigh intensity (> 10(19) W/cm(2)) picosecond laser pulse interactions with thin foil targets are investigated. Using separate, low intensity (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the molecular mechanism of antagonist unbinding in the ß(1) and ß(2) adrenoceptors investigated by steered molecular dynamics, we attempt to provide further possibilities of ligand subtype and subspecies selectivity. We have simulated unbinding of ß(1) -selective Esmolol and ß(2) -selective ICI-118551 from both receptors to the extracellular environment and found distinct molecular features of unbinding. By calculating work profiles, we show different preference in antagonist unbinding pathways between the receptors, in particular, perpendicular to the membrane pathway is favourable in the ß(1) adrenoceptor, whereas the lateral pathway involving helices 5, 6 and 7 is preferable in the ß(2) adrenoceptor. The estimated free energy change of unbinding based on the preferable pathway correlates with the experimental ligand selectivity. We then show that the non-conserved K347 (6.58) appears to facilitate in guiding Esmolol to the extracellular surface via hydrogen bonds in the ß(1) adrenoceptor. In contrast, hydrophobic and aromatic interactions dominate in driving ICI-118551 through the easiest pathway in the ß(2) adrenoceptor. We show how our study can stimulate design of selective antagonists and discuss other possible molecular reasons of ligand selectivity, involving sequential binding of agonists and glycosylation of the receptor extracellular surface. © 2012 John Wiley & Sons A/S.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metalloproteases ZapA of Proteus mirabilis and LasB of Pseudomonas aeruginosa are known to be virulence factors their respective opportunistic bacterial pathogens, and are members of the structurally related serralysin and thermolysin families of bacterial metalloproteases respectively. Secreted at the site of infection, these proteases play a key role in the infection process, contributing to tissue destruction and processing of components of the host immune system. Inhibition of these virulence factors may therefore represent an antimicrobial strategy, attenuating the virulence of the infecting pathogen. Previously we have screened a library of N-alpha mercaptoamide dipeptide inhibitors against both ZapA and LasB, with the aim of mapping the S1' binding site of the enzymes, revealing both striking similarities and important differences in their binding preferences. Here we report the design, synthesis, and screening of several inhibitor analogues, based on two parent inhibitors from the original library. The results have allowed for further characterization of the ZapA and LasB active site binding pockets, and have highlighted the possibility for development of broad-spectrum bacterial protease inhibitors, effective against enzymes of the thermolysin and serralysin metalloprotease families.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical complexity of the defensive skin secretion of the red-eyed leaf frog, (Agalychnis callidryas), has not been elucidated in detail. During a systematic study of the skin secretion peptidomes of phyllomedusine frogs, we discovered a novel Kazal-type protein with potent trypsin inhibitory activity (Ki = 1.9 nM) that displays the highest degree of structural similarity with Kazal proteins from bony fishes. The protein was located in reverse-phase HPLC fractions following a screen of such for trypsin inhibition and subsequent partial Edman degradation of the peak active fraction derived the sequence: ATKPR-QYIVL-PRILRPV-GT. The molecular mass of the major component in this fraction was established by MALDI-TOF MS as 5893.09 Da. This partial sequence (assuming blank cycles to be Cys residues) was used to design a degenerate primer pool that was employed successfully in RACE-PCR to clone homologous precursor-encoding cDNA that encoded a mature Kazal protein of 52 amino acid residues with a computed molecular mass of 5892.82 Da. The protein was named A. callidryas Kazal trypsin inhibitor (ACKTI). BLAST analysis revealed that ACKTI contained a canonical Kazal motif (C-x(7)-C-x(6)-Y-x(3)-C-x(2,3)-C). This novel amphibian skin Kazal trypsin inhibitor adds to the spectrum of trypsin inhibitors of Kunitz- and Bowman Birk-type reported from this amphibian source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excreted/secreted proteinases of adult and juvenile Fasciola hepatica maintained in vitro were found to hydrolyse the fluorogenic substrates Cbz-Phe-Arg- and Cbz-Arg-Arg-NHMec. This activity was demonstrated to have a classical cysteine proteinase inhibitor profile, with turn-over of both substrates being blocked by pre-incubation with E64 and peptidyl diazomethanes. The Cbz-Arg-Arg-NHMec hydrolysing activity of the mature fluke exhibited an alkaline stability not characteristic of its mammalian lysosomal counterparts. Further, the biotinylated affinity reagents biotin-Phe-Ala CHN2 and biotin-Phe-Cys(SBzyl)-CHN2 were used to label and characterize these cysteine proteinases in terms of apparent molecular weight and subsite specificity. Adult fluke media were found to contain four species of molecular weights 66, 58, 50 and 25-26 kDa; juvenile media contained three species of molecular weights 66, 54 and 25-26 kDa. The major 25-26 kDa cysteine proteinase common to both stages was shown to have a subsite specificity similar to that of mammalian cathepsin B.