990 resultados para Air sampling apparatus.
Resumo:
A small low air-speed wind turbine blade case study is used to demonstrate the effectiveness of a materials and design selection methodology described by Monroy Aceves et al. (2008) [24] for composite structures. The blade structure comprises a shell of uniform thickness and a unidirectional reinforcement. The shell outer geometry is fixed by aerodynamic considerations. A wide range of lay-ups are considered for the shell and reinforcement. Structural analysis is undertaken using the finite element method. Results are incorporated into a database for analysis using material selection software. A graphical selection stage is used to identify the lightest blade meeting appropriate design constraints. The proposed solution satisfies the design requirements and improves on the prototype benchmark by reducing the mass by almost 50%. The flexibility of the selection software in allowing identification of trends in the results and modifications to the selection criteria is demonstrated. Introducing a safety factor of two on the material failure stresses increases the mass by only 11%. The case study demonstrates that the proposed design methodology is useful in preliminary design where a very wide range of cases should be considered using relatively simple analysis. © 2011 Elsevier Ltd.
Resumo:
The potential adverse human health and climate impacts of emissions from UK airports have become a significant political issue, yet the emissions, air quality impacts and health impacts attributable to UK airports remain largely unstudied. We produce an inventory of UK airport emissions - including aircraft landing and takeoff (LTO) operations and airside support equipment - with uncertainties quantified. The airports studied account for more than 95% of UK air passengers in 2005. We estimate that in 2005, UK airports emitted 10.2 Gg [-23 to +29%] of NOx, 0.73 Gg [-29 to +32%] of SO2, 11.7 Gg [-42 to +77%] of CO, 1.8 Gg [-59 to +155%] of HC, 2.4 Tg [-13 to +12%] of CO2, and 0.31 Gg [-36 to +45%] of PM2.5. This translates to 2.5 Tg [-12 to +12%] CO2-eq using Global Warming Potentials for a 100-year time horizon. Uncertainty estimates were based on analysis of data from aircraft emissions measurement campaigns and analyses of aircraft operations.The First-Order Approximation (FOA3) - currently the standard approach used to estimate particulate matter emissions from aircraft - is compared to measurements and it is shown that there are discrepancies greater than an order of magnitude for 40% of cases for both organic carbon and black carbon emissions indices. Modified methods to approximate organic carbon emissions, arising from incomplete combustion and lubrication oil, and black carbon are proposed. These alterations lead to factor 8 and a 44% increase in the annual emissions estimates of black and organic carbon particulate matter, respectively, leading to a factor 3.4 increase in total PM2.5 emissions compared to the current FOA3 methodology. Our estimates of emissions are used in Part II to quantify the air quality and health impacts of UK airports, to assess mitigation options, and to estimate the impacts of a potential London airport expansion. © 2011 Elsevier Ltd.
Resumo:
It is extremely difficult to explore mRNA folding structure by biological experiments. In this report, we use stochastic sampling and folding simulation to test the existence of the stable secondary structural units of-mRNA, look for the folding units, and explore the probabilistic stabilization of the units. Using this method, We made simulations for all possible local optimum secondary structures of a single strand mRNA within a certain range, and searched for the common parts of the secondary structures. The consensus secondary structure units (CSSUs) extracted from the above method are mainly hairpins, with a few single strands. These CSSUs suggest that the mRNA folding units could be relatively stable and could perform specific biological function. The significance of these observations for the mRNA folding problem in general is also discussed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The paper describes an experimental and theoretical study of the deposition of small spherical particles from a turbulent air flow in a curved duct. The objective was to investigate the interaction between the streamline curvature of the primary flow and the turbulent deposition mechanisms of diffusion and turbophoresis. The experiments were conducted with particles of uranine (used as a fluorescent tracer) produced by an aerosol generator. The particles were entrained in an air flow which passed vertically downwards through a long straight channel of rectangular cross-section leading to a 90° bend. The inside surfaces of the channel and bend were covered with tape to collect the deposited particles. Following a test run the tape was removed in sections, the uranine was dissolved in sodium hydroxide solution and the deposition rates established by measuring the uranine concentration with a luminescence spectrometer. The experimental results were compared with calculations of particle deposition in a curved duct using a computer program that solved the ensemble-averaged particle mass and momentum conservation equations. A particle density-weighted averaging procedure was used and the equations were expressed in terms of the particle convective, rather than total, velocity. This approach provided a simpler formulation of the particle turbulence correlations generated by the averaging process. The computer program was used to investigate the distance required to achieve a fully-developed particle flow in the straight entry channel as well as the variation of the deposition rate around the bend. The simulations showed good agreement with the experimental results. © 2012 Elsevier Ltd.
Resumo:
This paper presents the results of a preliminary study that seeks to show how asphalt grading and air voids are related to the texture depth of asphalt. The fiftieth percentile particle size (D50) is shown to be a good predictor of texture depth measurements from a collected database of field and laboratory studies. The D50 is used to normalise collected texture data and this 'relative texture' is shown to correlate with air voids. Regression analyses confirm that air voids should be included along with a measure of gradation in the interpretation of asphalt surface texture.The derived formulae are used to develop correlation charts.
Resumo:
Preferential species diffusion is known to have important effects on local flame structure in turbulent premixed flames, and differential diffusion of heat and mass can have significant effects on both local flame structure and global flame parameters, such as turbulent flame speed. However, models for turbulent premixed combustion normally assume that atomic mass fractions are conserved from reactants to fully burnt products. Experiments reported here indicate that this basic assumption may be incorrect for an important class of turbulent flames. Measurements of major species and temperature in the near field of turbulent, bluff-body stabilized, lean premixed methane-air flames (Le=0.98) reveal significant departures from expected conditional mean compositional structure in the combustion products as well as within the flame. Net increases exceeding 10% in the equivalence ratio and the carbon-to-hydrogen atom ratio are observed across the turbulent flame brush. Corresponding measurements across an unstrained laminar flame at similar equivalence ratio are in close agreement with calculations performed using Chemkin with the GRI 3.0 mechanism and multi-component transport, confirming accuracy of experimental techniques. Results suggest that the large effects observed in the turbulent bluff-body burner are cause by preferential transport of H 2 and H 2O through the preheat zone ahead of CO 2 and CO, followed by convective transport downstream and away from the local flame brush. This preferential transport effect increases with increasing velocity of reactants past the bluff body and is apparently amplified by the presence of a strong recirculation zone where excess CO 2 is accumulated. © 2011 The Combustion Institute.
Resumo:
Underground space is commonly exploited both to maximise the utility of costly land in urban development and to reduce the vertical load acting on the ground. Deep excavations are carried out to construct various types of underground infrastructure such as deep basements, subways and service tunnels. Although the soil response to excavation is known in principle, designers lack practical calculation methods for predicting both short- and long-term ground movements. As the understanding of how soil behaves around an excavation in both the short and long term is insufficient and usually empirical, the judgements used in design are also empirical and serious accidents are common. To gain a better understanding of the mechanisms involved in soil excavation, a new apparatus for the centrifuge model testing of deep excavations in soft clay has been developed. This apparatus simulates the field construction sequence of a multi-propped retaining wall during centrifuge flight. A comparison is given between the new technique and the previously used method of draining heavy fluid to simulate excavation in a centrifuge model. The new system has the benefit of giving the correct initial ground conditions before excavation and the proper earth pressure distribution on the retaining structures during excavation, whereas heavy fluid only gives an earth pressure coefficient of unity and is unable to capture any changes in the earth pressure coefficient of soil inside the zone of excavation, for example owing to wall movements. Settlements of the ground surface, changes in pore water pressure, variations in earth pressure, prop forces and bending moments in the retaining wall are all monitored during excavation. Furthermore, digital images taken of a cross-section during the test are analysed using particle image velocimetry to illustrate ground deformation and soil-structure interaction mechanisms. The significance of these observations is discussed.
Resumo:
This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α σ≈=-20°to-25°. On the water side, the angle is α σ≈=-40°to-45°. The ratio between the maximum and the minimum principal stresses is σ a/σ b=3to4 on the air side, and σ a/σ b=1.5to3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches. © 2012 Elsevier B.V.
Resumo:
The recently introduced nested sampling algorithm allows the direct and efficient calculation of the partition function of atomistic systems. We demonstrate its applicability to condensed phase systems with periodic boundary conditions by studying the three dimensional hard sphere model. Having obtained the partition function, we show how easy it is to calculate the compressibility and the free energy as functions of the packing fraction and local order, verifying that the transition to crystallinity has a very small barrier, and that the entropic contribution of jammed states to the free energy is negligible for packing fractions above the phase transition. We quantify the previously proposed schematic phase diagram and estimate the extent of the region of jammed states. We find that within our samples, the maximally random jammed configuration is surprisingly disordered.
Resumo:
Air pockets, one kind of concrete surface defects, are often created on formed concrete surfaces during concrete construction. Their existence undermines the desired appearance and visual uniformity of architectural concrete. Therefore, measuring the impact of air pockets on the concrete surface in the form of air pockets is vital in assessing the quality of architectural concrete. Traditionally, such measurements are mainly based on in-situ manual inspections, the results of which are subjective and heavily dependent on the inspectors’ own criteria and experience. Often, inspectors may make different assessments even when inspecting the same concrete surface. In addition, the need for experienced inspectors costs owners or general contractors more in inspection fees. To alleviate these problems, this paper presents a methodology that can measure air pockets quantitatively and automatically. In order to achieve this goal, a high contrast, scaled image of a concrete surface is acquired from a fixed distance range and then a spot filter is used to accurately detect air pockets with the help of an image pyramid. The properties of air pockets (the number, the size, and the occupation area of air pockets) are subsequently calculated. These properties are used to quantify the impact of air pockets on the architectural concrete surface. The methodology is implemented in a C++ based prototype and tested on a database of concrete surface images. Comparisons with manual tests validated its measuring accuracy. As a result, the methodology presented in this paper can increase the reliability of concrete surface quality assessment