986 resultados para Age transition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide range of condensed matter systems traverse the metal-nonmetal transition. These include doped semiconductors, metal-ammonia solutions, metal clusters, metal alloys, transition metal oxides, and superconducting cuprates. Certain simple criteria, such as those due to Herzfeld and Mott, have been highly successful in explaining the metallicity of materials. In this article, we demonstrate the amazing effectiveness of these criteria and examine them in the light of recent experimental findings. We then discuss the Limitations in our understanding of the phenomenon of the metal-nonmetal transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we have investigated the composition-driven metal-insulator (MI) transitions in two ABO3 classes of perovskite oxides (LaNixCo1-xO3 and NaxTayW1-yO3) in the composition range close to the critical region by using the tunneling technique. Two types of junctions (point-contact and planar) have been used for the investigation covering the temperature range 0.4 Ktransition is approached. However, there is a fairly strong thermal-smearing effect near the zero-bias region for ?V?<10kBT/e. $G(V)� has been found to follow a power law of the type G(V)=G0(1+{?V?/V*}n) with V*=const and with n=0.5 for samples in the weak-localization region. However, as the critical region of the MI transition is approached G0?0 and n?1. We also find that for samples lying in the weak-localization region ?=eV* has a well-defined dependence on ?0, the zero-temperature conductivity. The observed behavior can be explained either as a manifestation of depletion of density of states at the Fermi level as the MI transition is approached or as a manifestation of strong inelastic scattering in the junction region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Comment on the Letter by C. Van den Broeck, J. M. R. Parrondo, and R. Toral, Phys. Rev. Lett. 73, 3395 (1994). The authors of the Letter offer a Reply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-dependent wavepacket propagation techniques have been used to calculate the absorption spectrum and the resonance Raman excitation profiles of the n-pi* transition in azobenzene. A comparison of both the calculated absorption spectrum and excitation profiles with experiment has been made. From an analysis of the data, it is concluded that the Raman intensities are mainly due to resonance from the n-pi* transition and not from the pre-resonance of the pi-pi* transition, as reported earlier. We find that the isomerization pathway is through the inversion mechanism rather than by rotation. This is the first direct spectroscopic evidence for the isomerization pathway in trans-azobenzene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All ‘undoped’ cuprates are antiferromagnetic Mott insulators. We argue that with doping they remain to be insulators including the ‘overdoped’ samples. Hence, there is no clear dividing line between non–metallic cuprates and high–temperature superconductors. Based on the generic Hamiltonian including the electron–phonon interaction and the direct Coulomb repulsion the ground state of doped cuprates is shown to be a charged 2e Bose liquid of small bipolarons. A theory of the normal state transport of copper oxides is developed. The temperature dependence of the resistivity and of the Hall effect agrees remarkably well with the experimental data in La2–xSrxCuO4 for the entire temperature regime including unusual ‘logarithmic’ low–temperature region. The violation of Kohler's rule in magnetoresistivity is explained. The resistive and thermodynamic superconducting transitions in a magnetic field are quantitatively described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomistic simulation of Ag, Al, Au, Cu, Ni, Pd, and Pt FCC metallic nanowires show a universal FCC -> HCP phase transformation below a critical cross-sectional size, which is reported for the first time in this paper. The newly observed HCP structure is also confirmed from previous experimental results. Above the critical cross-sectional size, initial < 100 >/{100} FCC metallic nanowires are found to be metastable. External thermal heating shows the transformation of metastable < 100 >/{100} FCC nanowires into < 110 >/{111} stable configuration. Size dependent metastability/instability is also correlated with initial residual stresses of the nanowire by use of molecular static simulation using the conjugant gradient method at a temperature of 0 K. It is found that a smaller cross-sectional dimension of an initial FCC nanowire shows instability due to higher initial residual stresses, and the nanowire is transformed into the novel HCP structure. The initial residual stress shows reduction with an increase in the cross-sectional size of the nanowires. A size dependent critical temperature is also reported for metastable FCC nanowires using molecular dynamic, to capture the < 110 >/{111} to < 100 >/{100} shape memory and pseudoelasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the magnetic and structural properties of the lanthanum manganite-based double-exchange magnets exhibiting colossal magnetoresistance. A model Hamiltonian containing the double-exchange, superexchange, and the Hubbard terms, with parameters obtained from density–functional calculations (Ref. 1), is studied within a mean-field approximation both at temperature T=0 and T>0 and with the effects of the magnetic field included. The phase diagrams we obtain with magnetic and charge-ordered phases enable us to examine the competition between the double- and superexchange terms as functions of doping and temperature. Our theoretical study provides a qualitative understanding of the phase diagram observed in the experiments. © 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonequilibrium-phase transition has been studied by Monte Carlo simulation in a ferromagnetically interacting (nearest-neighbour) kinetic Ising model in presence of a sinusoidally oscillating magnetic field. The ('specific-heat') temperature derivative of energies (averaged over a full cycle of the oscillating field) diverge near the dynamic transition point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonequilibrium dynamic phase transition, in the kinetic Ising model in the presence of an oscillating magnetic field has been studied both by Monte Carlo simulation and by solving numerically the mean-field dynamic equation of motion for the average magnetization. In both cases, the Debye ''relaxation'' behavior of the dynamic order parameter has been observed and the ''relaxation time'' is found to diverge near the dynamic transition point. The Debye relaxation of the dynamic order parameter and the power law divergence of the relaxation time have been obtained from a very approximate solution of the mean-field dynamic equation. The temperature variation of appropriately defined ''specific heat'' is studied by the Monte Carlo simulation near the transition point. The specific heat has been observed to diverge near the dynamic transition point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonequilibrium dynamic phase transition in the kinetic Ising model in the presence of an oscillating magnetic field is studied by Monte Carlo simulation. The fluctuation of the dynamic older parameter is studied as a function of temperature near the dynamic transition point. The temperature variation of appropriately defined ''susceptibility'' is also studied near the dynamic transition point. Similarly, the fluctuation of energy and appropriately defined ''specific heat'' is studied as a function of temperature near the dynamic transition point. In both cases, the fluctuations (of dynamic order parameter and energy) and the corresponding responses diverge (in power law fashion) near the dynamic transition point with similar critical behavior (with identical exponent values).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structures of pyrite-type transition-metal chalcogenides MS2-xSex (M = Fe, Co, Ni) has been investigated by photoemission and inverse-photoemission spectroscopy. The valence-band spectrum of ferromagnetic CoS2 does not show exchange splitting of the Co 3d peak, in disagreement with band-structure calculations. High-resolution photoemission spectra of NiS1.55Se0.45 shows spectral weight transfer from low (similar or equal to 50 meV) to high (0.2-0.5 eV) binding energies, in going from the metallic to the insulating phase.