979 resultados para Aegean_LC-21
Resumo:
Background: Prognosis of prostate cancer (PCa) is based mainly in histological aspects together with PSA serum levels that not always reflect the real aggressive potential of the neoplasia. The micro RNA (miRNA) mir-21 has been shown to regulate invasiveness in cancer through translational repression of the Metaloproteinase (MMP) inhibitor RECK. Our aim is to investigate the levels of expression of RECK and miR-21 in PCa comparing with classical prognostic factors and disease outcome and also test if RECK is a target of miR-21 in in vitro study using PCa cell line. Materials and methods: To determine if RECK is a target of miR-21 in prostate cancer we performed an in vitro assay with PCa cell line DU-145 transfected with pre-miR-21 and anti-miR-21. To determine miR-21 and RECK expression levels in PCa samples we performed quantitative real-time polymerase chain reaction (qRT-PCR). Results: The in vitro assays showed a decrease in expression levels of RECK after transfection with pre-miR-21, and an increase of MMP9 that is regulated by RECK compared to PCa cells treated with anti-miR-21. We defined three profiles to compare the prognostic factors. The first was characterized by miR-21 and RECK underexpression (N = 25) the second was characterized by miR-21 overexpression and RECK underexpression (N = 12), and the third was characterized by miR-21 underexpression and RECK overexpression (N = 16). From men who presented the second profile (miR-21 overexpression and RECK underexpression) 91.7% were staged pT3. For the other two groups 48.0%, and 46.7% of patients were staged pT3 (p = 0.025). Conclusions: Our results demonstrate RECK as a target of miR-21. We believe that miR-21 may be important in PCa progression through its regulation of RECK, a known regulator of tumor cell invasion.
Resumo:
The most frequent form of congenital adrenal hyperplasia (CAH) is steroid 21-hydroxylase deficiency, accounting for more than 90% of cases. Affected patients cannot synthesize cortisol efficiently. Thus the adrenal cortex is stimulated by corticotropin (ACTH) and overproduces cortisol precursors. Some precursors are diverted to sex hormone biosynthesis, causing signs of androgen excess including ambiguous genitalia in newborn females and rapid postnatal growth in both sexes. In the most severe "salt wasting" form of CAH (similar to 75% of severe or "classic" cases), concomitant aldosterone deficiency may lead to salt wasting with consequent failure to thrive, hypovolemia, and shock. Newborn screening minimizes delays in diagnosis, especially in males, and reduces morbidity and mortality from adrenal crises. CAH is a recessive disorder caused by mutations in the CYP21 (CYP21A2) gene, most of which arise from recombination between CYP21 and a nearby pseudogene, CYP21P (CYP21A1P). Phenotype is generally correlated with genotype. Classic CAH patients require chronic glucocorticoid treatment at the lowest dose that adequately suppresses adrenal androgens and maintains normal growth and weight gain, and most require mineralocorticoid (fludrocortisone). Transition of care of older patients to adult physicians should be planned in advance as a structured, ongoing process.
Resumo:
Chronic myelogenous leukemia (CML) is a common myeloproliferative disease that is characterized by the clonal expansion of marrow stem cells, and is associated with the Philadelphia chromosome. As the disease progresses, additional chromosome abnormalities may arise. The prognostic impact of secondary chromosomal abnormalities in CML is complex, heterogeneous, and sometimes related to previous treatment. Here, we describe a CML patient in lymphoid blast crisis associated with a new chromosomal abnormality identified, dic(7;12)(p12.21;p12.2) and i(12)(q10) using classical cytogenetics and spectral karyotype analysis. To the best of our knowledge, this is the first report of t(7;12)(p11.1;q11.1) and i(12)(q10) in a CML patient with lymphoid evolution.
Resumo:
Aerobic exercise training (ET) lowers hypertension and improves patient outcomes in cardiovascular disease. The mechanisms of these effects are largely unknown. We hypothesized that ET modulates microRNAs (miRNAs) involved in vascularization. miRNA-16 regulates the expression of vascular endothelial growth factor and antiapoptotic protein Bcl-2. miRNA-21 targets Bcl-2. miRNA-126 functions by repressing regulators of the vascular endothelial growth factor pathway. We investigated whether miRNA-16, -21 and -126 are modulated in hypertension and by ET. Twelve-week-old male spontaneously hypertensive rats (SHRs; n=14) and Wistar Kyoto (WKY; n=14) rats were assigned to 4 groups: SHRs, trained SHRs (SHR-T), Wistar Kyoto rats, and trained Wistar Kyoto rats. ET consisted of 10 weeks of swimming. ET reduced blood pressure and heart rate in SHR-Ts. ET repaired the slow-to-fast fiber type transition in soleus muscle and the capillary rarefaction in SHR-Ts. Soleus miRNA-16 and -21 levels increased in SHRs paralleled with a decrease of 48% and 25% in vascular endothelial growth factor and Bcl-2 protein levels, respectively. Hypertension increased Bad and decreased Bcl-x and endothelial NO synthase levels and lowered p-Bad(ser112): Bad ratio. ET in SHR-Ts reduced miRNA-16 and -21 levels and elevated vascular endothelial growth factor and Bcl-2 levels. ET restored soleus endothelial NO synthase levels plus proapoptotic and antiapoptotic mediators in SHR-Ts, indicating that the balance between angiogenic and apoptotic factors may prevent microvascular abnormalities in hypertension. miRNA-126 levels were reduced in SHRs with an increase of 51% in phosphoinositol-3 kinase regulatory subunit 2 expression but normalized in SHR-Ts. Our data show that ET promoted peripheral revascularization in hypertension, which could be associated with regulation of select miRNAs, suggesting a mechanism for its potential therapeutic application in vascular diseases. (Hypertension. 2012;59[part 2]:513-520.). Online Data Supplement