980 resultados para Adrenergic beta-Antagonists
Resumo:
Background: The DUB/USP17 subfamily of deubiquitinating enzymes were originally identified as immediate early genes induced in response to cytokine stimulation in mice (DUB-1, DUB-1A, DUB-2, DUB-2A). Subsequently we have identified a number of human family members and shown that one of these (DUB-3) is also cytokine inducible. We originally showed that constitutive expression of DUB-3 can block cell proliferation and more recently we have demonstrated that this is due to its regulation of the ubiquitination and activity of the 'CAAX' box protease RCE1.
Results: Here we demonstrate that the human DUB/USP17 family members are found on both chromosome 4p16.1, within a block of tandem repeats, and on chromosome 8p23.1, embedded within the copy number variable betadefensin cluster. In addition, we show that the multiple genes observed in humans and other distantly related mammals have arisen due to the independent expansion of an ancestral sequence within each species. However, it is also apparent when sequences from humans and the more closely related chimpanzee are compared, that duplication events have taken place prior to these species separating.
Conclusions: The observation that the DUB/USP17 genes, which can influence cell growth and survival, have evolved from an unstable ancestral sequence which has undergone multiple and varied duplications in the species examined marks this as a unique family. In addition, their presence within the beta-defensin repeat raises the question whether they may contribute to the influence of this repeat on immune related conditions.
Resumo:
The monomeric GTPase Rap1 controls functional activation of beta2 integrins in leukocytes. In this article, we describe a novel mechanism by which the chemoattractant fMLP activates Rap1 and inside-out signaling of beta2 integrins. We found that fMLP-induced activation of Rap1 in human polymorphonuclear leukocytes or neutrophils and differentiated PLB-985 cells was blocked by inhibitors of the NO/guanosine-3',5'-cyclic monophosphate-dependent protein kinase (cGKI) pathway [N-(3-(aminomethyl)benzyl)acetamidine, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, DT-3 peptide, 8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphothioate, Rp-isomer triethylammonium salt-guanosine-3',5'-cyclic monophosphate], indicating that the downstream signaling events in Rap1 activation involve the production of NO and guanosine-3',5'-cyclic monophosphate, as well as the activation of cGKI. Silencing the expression of vasodilator-stimulated phosphoprotein (VASP), a substrate of cGKI, in resting PLB-985 cells or mice neutrophils led to constitutive activation of Rap1. In parallel, silencing VASP in differentiated PLB-985 cells led to recruitment of C3G, a guanine nucleotide exchange factor for Rap1, to the plasma membrane. Expression of murine GFP-tagged phosphodeficient VASP Ser235Ala mutant (murine serine 235 of VASP corresponds to human serine 239) in PLB-985 cells blunted fMLP-induced translocation of C3G to the membrane and activation of Rap1. Thus, bacterial fMLP triggers cGKI-dependent phosphorylation of human VASP on serine 239 and, thereby, controls membrane recruitment of C3G, which is required for activation of Rap1 and beta2 integrin-dependent antibacterial functions of neutrophils.