999 resultados para Accumulation rate, dust


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Bounty Trough, east of New Zealand, lies along the southeastern edge of the present-day Subtropical Front (STF), and is a major conduit via the Bounty Channel, for terrigenous sediment supply from the uplifted Southern Alps to the abyssal Bounty Fan. Census data on 65 benthic foraminiferal faunas (>63 µm) from upper bathyal (ODP 1119), lower bathyal (DSDP 594) and abyssal (ODP 1122) sequences, test and refine existing models for the paleoceanographic and sedimentary history of the trough through the last 150 ka (marine isotope stages, MIS 6-1). Cluster analysis allows recognition of six species groups, whose distribution patterns coincide with bathymetry, the climate cycles and displaced turbidite beds. Detrended canonical correspondence analysis and comparisons with modern faunal patterns suggest that the groups are most strongly influenced by food supply (organic carbon flux), and to a lesser extent by bottom water oxygen and factors relating to sediment type. Major faunal changes at upper bathyal depths (1119) probably resulted from cycles of counter-intuitive seaward-landward migrations of the Southland Front (SF) (north-south sector of the STF). Benthic foraminiferal changes suggest that lower nutrient, cool Subantarctic Surface Water (SAW) was overhead in warm intervals, and higher nutrient-bearing, warm neritic Subtropical Surface Water (STW) was overhead in cold intervals. At lower bathyal depths (594), foraminiferal changes indicate increased glacial productivity and lowered bottom oxygen, attributed to increased upwelling and inflow of cold, nutrient-rich, Antarctic Intermediate Water (AAIW) and shallowing of the oxygen-minimum zone (upper Circum Polar Deep Water, CPDW). The observed cyclical benthic foraminiferal changes are not a result of associations migrating up and down the slope, as glacial faunas (dominated by Globocassidulina canalisuturata and Eilohedra levicula at upper and lower bathyal depths, respectively) are markedly different from those currently living in the Bounty Trough. On the abyssal Bounty Fan (1122), faunal changes correlate most strongly with grain size, and are attributed to varying amounts of mixing of displaced and in-situ faunas. Most of the displaced foraminifera in turbiditic sand beds are sourced from mid-outer shelf depths at the head of the Bounty Channel. Turbidity currents were more prevalent during, but not restricted to, glacial intervals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Pliocene-Holocene sediments recovered on ODP Leg 114 from Holes 699A, 701C, and 704B are the subject of a detailed investigation to interpret changes in the Oceanographic environment of the South Atlantic in the vicinity of the Polar Front Zone (PFZ). The cores sample sediments at shallow (Hole 704B, 2532 m), intermediate (Hole 699A, 3716 m), and basinal (Hole 701C, 4647 m) depths. Sites 699 and 704 come under the influence of the Antarctic Circumpolar Current (ACC) and Circumpolar Deep Water. It is possible that the upper reaches of Antarctic Bottom Water (AABW) may also affect Hole 699A. Site 701 is influenced by AABW. Closely spaced samples were analyzed for grain-size distribution, sand fraction components, biosiliceous microfossils, organic carbon, and water content. PFZ migrations are traced using changes in bulk sedimentaccumulation rates and the abundance of the diatoms Actiniscus ssp. and Genus et species indet. 1 Fenner (1991), as well as changes in sediment grain size and composition. Diatomaceous sediments of Gilbert age in Hole 699A indicate that the PFZ was positioned over this site, but during the Gauss it migrated north, bringing in less productive Antarctic Surface Water. All cores document a very gradual southerly movement of the PFZ throughout the Matuyama (with some sharp fluctuations of the northen PFZ border over Site 704 between 1.45 and 1.83 m.y.). This regressive shift culminated in the late Matuyama. The latest Matuyama to earliest Brunhes record in Hole 699A has been removed by a hiatus lasting from 1.0 to 0.6 m.y., which was probably caused by intensification of the deep-reaching ACC. The corresponding interval in Hole 704B, the shallowest core, contains evidence of winnowing. Sharp fluctuations of large amplitude and high frequency in the lithology of the sediments from Hole 704B in the eastern South Atlantic, starting at about 0.75 m.y. and characterizing the whole Brunhes Epoch, record the rapid movement of the northern border of the PFZ over the site. These reflect strong glacial/interglacial alternations in climate. To a lesser extent, lithologic fluctuations in Hole 701C reflect the same phenomenon, whereas in Hole 699A the lithology does not vary as dramatically.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Paleocene/Eocene Thermal Maximum (PETM, ca. 55 Ma) is an abrupt, profound perturbation of climate and the carbon cycle associated with a massive injection of isotopically light carbon into the ocean-atmosphere system. As such, it provides an analogue for understanding the interplay between phytoplankton and climate under modern anthropogenic global-warming conditions. However, the accompanying enhanced dissolution poses uncertainty on the reconstruction of the affected ecology and productivity. We present a high-resolution record of bulk isotopes and nannofossil absolute abundance from Ocean Drilling Program (ODP) Site 1135 on the Kerguelen Plateau, Southern Indian Ocean to quantitatively constrain for the first time the influence of dissolution on paleoecological reconstruction. Our bulk-carbonate isotope record closely resembles that of the classic PETM site at ODP Site 690 on the opposite side of the Antarctic continent, and its correlation with those from ODP Sites 690, 1262 and 1263 records allows recognition of 14 precessional cycles upsection from the onset of the carbon isotopic excursion (CIE). This, together with a full range of common Discoasteraraneus and an abundance crossover between Fasciculithus and Zygrhablithusbijugatus, indicates the presence of the PETM at Site 1135, a poorly known record with calcareous fossils throughout the interval. The strong correlation between the absolute abundances of Chiasmolithus and coccolith assemblages reveals a dominant paleoecological signal in the poorly preserved fossil assemblages, while the influence of dissolution is only strong during the CIE. This suggests that r-selected taxa can preserve faithful ecological information even in the severely-altered assemblages studied here, and therefore provide a strong case for the application of nannofossils to paleoecological studies in better-preserved PETM sections. The inferred nannoplankton productivity drops abruptly at the CIE onset, but rapidly increases after the CIE peak, both of which may be driven by nutrient availability related to ocean stratification and vertical mixing due to changed sea-surface temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The late Quaternary sequence off eastern South Island, New Zealand, consists of ~100 m of alternating bluish gray pelagic oozes and greenish gray hemipelagic oozes that extend uninterruptedly back to the Brunhes/Matuyama boundary (0.73 m.y.). A very high resolution (~2400 yr.) record of sediment texture, calcium carbonate content, and planktonic and benthic foraminiferal oxygen and carbon isotope composition demonstrates an in-phase cyclical fluctuation between the sedimentary parameters that closely correspond to the pelagic-hemipelagic sedimentation cycles and the isotope composition. Pelagic oozes, formed during interglacial periods of high eustatic sea level, are characterized by calcareous microfossils, relative enrichment in sand and clay sizes, high carbonate contents, reduced delta18O values, and increased delta13C values. Hemipelagic oozes, associated with glacial episodes and lowered eustatic sea level, include common terrigenous material and siliceous microfossils, are enriched in silt sizes, have low carbonate contents, high delta18O values, and low delta13C values. The history of alpine glaciations and associated erosion of the South Island of New Zealand, as expressed by the appearance of hemipelagic oozes, can be correlated directly with the major fluctuations of Northern Hemisphere ice sheets as expressed by the influence of eustatic sea-level changes on the oxygen isotope composition of both planktonic and benthic foraminifers. This high-accumulation-rate record contains conspicuous intervals of highfrequency, high-amplitude isotope variability including the presence of multiple glacial/interglacial intervals within single isotope stages, and offers one of the best sections cored to date for detailed study of the evolution and history of climate change over the last 0.75 m.y.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A sediment core from the Lofoten Contourite Drift on the continental slope off Northern Norway, proximal to the former Vestfjorden-Trsnadjupet Ice Stream, details the development, variability and decline of marine margins of the northwestern Fennoscandian Ice Sheet during the time interval 25.3-14 cal ka BP, including the Last Glacial Maximum and onset of the deglaciation based on high-resolution IRD records. From the core interval between 25.3 and 17.7 cal ka BP we report data points with a mean time step of 10 years, between 17.7 cal ka BP and the Holocene time steps are typically 50 years. The core is divided into 7 informal ice-rafted debris (IRD) zones based on the variations in IRD including 7 major IRD maxima (A-G), inferred to represent periods of high iceberg production. Petrological identification reveals dominance of crystalline IRD (monocrystalline, plutonic and metamorphic rock fragments) accounting for 75-80% of total IRD assemblages, while sedimentary fragments generally account for 15-20%. The crystalline fragments (including eclogite and mangerite from a nearby terrestrial source) increase across the IRD peaks while the sedimentary fragments remain constant. This points to the importance of erosional products from icebergs originating from fast-flowing paleo-ice streams including the Vestfjorden-Trsnadjupet Ice Stream draining from the Fennoscandian mainland during the IRD maxima periods. Increased temperature of the adjacent surface water masses was probably an important external forcing factor on the Fennoscandian Ice Sheet behavior because some IRD maxima and plumite deposition from meltwater plumes post-date periods of increased sea surface temperatures. The peak IRD depositions occur in centennial and millennial time cycles (~200, 1030 and 3900 year) indicating some external forcing by solar variation. Both mechanisms could explain the observed synchronous instability of the northwestern Fennoscandian Ice Sheet to other European Ice Sheets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deep-sea benthic foraminifera show important but transient assemblage changes at the Cretaceous/Paleogene (K/Pg) boundary, when many biota suffered severe extinction. We quantitatively analyzed benthic foraminiferal assemblages from lower bathyal-upper abyssal (1500-2000 m) northwest Pacific ODP Site 1210 (Shatsky Rise) and compared the results with published data on assemblages at lower bathyal (~ 1500 m) Pacific DSDP Site 465 (Hess Rise) to gain insight in paleoecological and paleoenvironmental changes at that time. At both sites, diversity and heterogeneity rapidly decreased across the K/Pg boundary, then recovered. Species assemblages at both sites show a similar pattern of turnover from the uppermost Maastrichtian into the lowermost Danian: 1) The relative abundance of buliminids (indicative of a generally high food supply) increases towards the uppermost Cretaceous, and peaks rapidly just above the K/Pg boundary, coeval with a peak in benthic foraminiferal accumulation rate (BFAR), a proxy for food supply. 2) A peak in relative abundance of Stensioeina beccariiformis, a cosmopolitan form generally more common at the middle than at the lower bathyal sites, occurs just above the buliminid peak. 3) The relative abundance of Nuttallides truempyi, a more oligotrophic form, decreases at the boundary, then increases above the peak in Stensioeina beccariiformis. The food supply to the deep sea in the Pacific Ocean thus apparently increased rather than decreased in the earliest Danian. The low benthic diversity during a time of high food supply indicates a stressed environment. This stress might have been caused by reorganization of the planktic ecosystem: primary producer niches vacated by the mass extinction of calcifying nannoplankton may have been rapidly (<10 kyr) filled by other, possibly opportunistic, primary producers, leading to delivery of another type of food, and/or irregular food delivery through a succession of opportunistic blooms. The deep-sea benthic foraminiferal data thus are in strong disagreement with the widely accepted hypothesis that the global deep-sea floor became severely food-depleted following the K/Pg extinction due to the mass extinction of primary producers ("Strangelove Ocean Model") or to the collapse of the biotic pump ("Living Ocean Model").

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The basal melting and freezing rates under the Amery Ice Shelf, East Antarctica, are evaluated, and their spatial distributions mapped. Ice velocity, surface elevation and accumulation rate datasets are employed in the analysis, along with a column-averaged ice density model. Our analysis shows that the total area of basal melting is 34 700 km**2, with a total annual melt of 62.5 ± 9.3 Gt and an average melting rate of 1.8 ± 0.3 m/a. Basal freezing mainly occurs in the northwestern part of the ice shelf, over a total area of 26100 km**2 and with a maximum freezing rate of 2.4 ± 0.4 m/a. The total marine ice that accretes to the ice-shelf base is estimated to be 16.2 ± 2.4 Gt/a. Using a redefined grounding line and geometry of the Amery Ice Shelf, we estimate the net melt over the ice-shelf base is about 46.4 ± 6.9 Gt/a, which is higher than previous modeling and oceanographic estimates. Net basal melting accounts for about half of the total ice-shelf mass loss, with the rest being from iceberg discharge. Our basal melting and freezing distribution map provides a scientific basis for quantitative analysis of ice-ocean interaction at the ice-shelf-ocean interface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sediments from Ocean Drilling Program Site 1165 in the Indian Ocean sector of the Southern Ocean (off Prydz Bay) contain a series of layers that are rich in ice-rafted debris (IRD). Here we present evidence that IRD-rich layers at Site 1165 at 7, 4.8, and 3.5 Ma record short-lived, massive discharges of icebergs from Wilkes Land and Adélie Land, more than 1500 kilometers to the east of the depositional site. This distant source of icebergs is clearly defined by the presence of IRD hornblende grains with 40Ar/39Ar ages of 1200-1100 Ma and 1550-1500 Ma, ages that are not found on the East Antarctic continent in locations closer to Site 1165. This observation requires enormous amounts of detritus-carrying drifting icebergs, most likely in the form of large icebergs. These events probably reflect destabilization, surge, and break-up of ice streams on the Wilkes Land and Adélie Land margins of the East Antarctic Ice Sheet, in the vicinity of the low-lying Aurora and Wilkes Basins. They occurred under warming conditions, but each coast seems to have produced ice-rafting events independently, at different times. The data presented here constitute the first evidence of far-traveled icebergs from specific source areas around the East Antarctic perimeter. Launch of these icebergs may have happened during quite dramatic events, perhaps analogous to "Heinrich Events" in the North Atlantic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distinctive, massive to stratified, pale blue volcaniclastics, initially referred to as the "blue tuff," were encountered at all four sites drilled during ODP Leg 127 in the Japan Sea. Detailed vertical sequence analysis, plagioclase chemistry, plagioclase 87Sr/86Sr isotopic composition, and 40Ar/39Ar age dating indicate that thick sequences of the blue tuff are not genetically related. Blue tuffs at Hole 794B were apparently deposited by density flows at ambient temperature. Deposition was penecontemporaneous with a large submarine phreatomagmatic eruption at 14.9 Ma in bathyal or deeper water depths. The blue tuffs at this location comprise mostly reworked hydroclastic glass shards and lesser amounts of plagioclase crystals. Pyrogenic plagioclase has an average An mole% of 18±3. Comparison of blue tuff plagioclase compositions with the composition of plagioclase from acoustic basement at Site 794 suggests that these rocks are not genetically related. As such, the extrapolation of sediment accumulation rate data in conjunction with this more precise age for the blue tuff corroborates previous minimum age estimates of 16.2 Ma for acoustic basement at Site 794. Blue tuffs at Hole 796B were probably deposited at ambient temperatures by downslope slumping and density flow of reworked pyrogenic debris. This debris includes abundant bubble wall glass shards and plagioclase crystals, with variable admixture of volcanic lithic and intrabasinal fragments. Pyrogenic fragments were produced by subaerial or shallow submarine, magmatic eruptions dated at 7.6 Ma. Blue tuffs contain a heterogeneous mixture of unrelated fragments including a mixed population of plagioclase crystals. The average An mole% of the predominant, probable comagmatic, plagioclase population is 30±4. The two sequences of blue tuff studied are distinct in age, mineral composition, and the eruptive origin of pyroclastic fragments. Preliminary 87Sr/86Sr isotopic compositions of plagioclase, however, indicates that blue tuffs at both locations are the product of typical, subduction-related island arc magmatism. Based on the results of this study, there is no justification for stratigraphic correlation of widespread, Miocene, blue to blue-gray bentonitic tuff and tuffaceous sandstones nor the interpretation that these strata are indicative of regional, explosive submarine volcanism genetically related to rifting and formation of the Japan Sea. Rather, these reworked pyroclastic strata of intermediate composition were deposited over a protracted 6-8 m.y. period in association with widespread, subduction-related submarine to subaerial volcanism in the Japan Sea backarc basin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two sediment cores from the West Spitsbergen area, Euro-Arctic margin, MD99-2304 and MD99-2305, have been investigated for paleoceanographic proxies, including benthic and planktonic foraminifera, benthic foraminiferal stable isotopes and ice rafted debris. Core MD99-2304 is located on the upper continental margin, reflecting variations in the influx of Atlantic Water in the West Spitsbergen Current. Core MD99-2305 is located in Van Mijenfjord, picturing variations in tidewater glacier activity as well as fjord-ocean circulation changes. Surface water warmer than today, was present on the margin as soon as the Van Mijenfjord was deglaciated by 11,200 cal. years BP. Relatively warm water invaded the fjord bottom almost immediately after the deglaciation. A relatively warm early Holocene was followed by an abrupt cooling at 8800 cal. years BP on the continental margin. Another cooling in the fjord record, 8000-4000 cal. years BP, is documented by an increase in ice rafted debris and an increase in benthic foraminiferal delta18O. The IRD-record indicates that central Spitsbergen never was completely deglaciated during the Holocene. Relatively cool and stable conditions similar to the present were established about 4000 cal. years BP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The porewater and sediment composition of two boxcores and of a small gravity core, taken on a manganese-nodule-covered hill and in the Madeira Abyssal Plain proper respectively, are compared. The pore-water study of the two boxcores indicates that oxic conditions prevail in both cores. In addition, it indicates that no detectable fluxes of Mn or Fe occur from the porewater to the ocean bottom water. Variations in the geochemical composition of the sediments can be explained by fluctuations in the amount of carbonate, which acts as a diluting agent. A clear carbonate minimum is observed at 20-22 cm depth in the two cores. This minimum is likely to be associated with the last glacial period (10-20 kyr B.P.). This association is supported by the sediment accumulation rate of 15 mm/kyr as found by extrapolation from the rate for pelagic sediments in the Madeira Abyssal Plain. The bulk composition of the manganese nodules recovered from the submarine hill is chemically almost identical to the average composition of Atlantic nodules. The trace metal and Rare Earth Elements composition indicate a hydrogenous origin for the manganese nodules of this study. On the basis of the chemical composition, and that of nodules relative to that of the adjacent sediments, an average nodule accretian rate of 2.8-3.3 mm/myr has been calculated. Although the analyses of the entire ferromanganese nodules that have been studied seem to indicate a homogenous composition, internal structures of the nodules reveal great inhomogeneity, both visually and chemically. These fluctuations may be related to variations in the fluxes of Mn and Fe, which in turn could be climate-related.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil erosion is a widespread problem in agricultural landscapes, particularly in regions with strong rainfall events. Vegetated field margins can mitigate negative impacts of soil erosion by trapping eroded material. In this data set, we present data of sediment trapped by 12 field margins during the monsoon season of 2013 in an agricultural landscape in the Haean-myun catchment in South Korea. Prior to the beginning of monsoon season, we equipped a total of 12 sites representing three replicates for each of four different types of field margins ("managed flat", "managed steep", "natural flat" and "natural steep") with Astroturf mats with a size of 34 cm x 25 cm (850 cm**2). The mats (n = 15 / site) were installed at three levels: upslope, immediately before the field margin to quantify the sediments that reach it, in the middle of the field margin to quantify the locally trapped sediments, and after the field margin at the downslope edge to quantify the sediments that leave the field margin to the next field or to the stream. Sediment was collected after each rain event until the end of the monsoon season.