982 resultados para Aaa-atpase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previously, we reported on the discovery and characterization of a mammalian chromatin-associated protein, CHD1 (chromo-ATPase/helicase-DNA-binding domain), with features that led us to suspect that it might have an important role in the modification of chromatin structure. We now report on the characterization of the Drosophila melanogaster CHD1 homologue (dCHD1) and its localization on polytene chromosomes. A set of overlapping cDNAs encodes an 1883-aa open reading frame that is 50% identical and 68% similar to the mouse CHD1 sequence, including conservation of the three signature domains for which the protein was named. When the chromo and ATPase/helicase domain sequences in various CHD1 homologues were compared with the corresponding sequences in other proteins, certain distinctive features of the CHD1 chromo and ATPase/helicase domains were revealed. The dCHD1 gene was mapped to position 23C-24A on chromosome 2L. Western blot analyses with antibodies raised against a dCHD1 fusion protein specifically recognized an approximately 210-kDa protein in nuclear extracts from Drosophila embryos and cultured cells. Most interestingly, these antibodies revealed that dCHD1 localizes to sites of extended chromatin (interbands) and regions associated with high transcriptional activity (puffs) on polytene chromosomes from salivary glands of third instar larvae. These observations strongly support the idea that CHD1 functions to alter chromatin structure in a way that facilitates gene expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcription factor IIH (TFIIH) is a multisubunit complex required for transcription and for DNA nucleotide excision repair. TFIIH possesses three enzymatic activities: (i) an ATP-dependent DNA helicase, (ii) a DNA-dependent ATPase, and (iii) a kinase with specificity for the carboxyl-terminal domain of RNA polymerase II. The kinase activity was recently identified as the cdk (cyclin-dependent kinase) activating kinase, CAK, composed of cdk7, cyclin H, and MAT-1. Here we report the isolation and characterization of three distinct CAK-containing complexes from HeLa nuclear extracts: CAK, a novel CAK-ERCC2 complex, and TFIIH. CAK-ERCC2 can efficiently associate with core-TFIIH to reconstitute holo-TFIIH transcription activity. We present evidence proposing a critical role for ERCC2 in mediating the association of CAK with core TFIIH subunits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently individual two-headed kinesin molecules have been studied in in vitro motility assays revealing a number of their peculiar transport properties. In this paper we propose a simple and robust model for the kinesin stepping process with elastically coupled Brownian heads that show all of these properties. The analytic and numerical treatment of our model results in a very good fit to the experimental data and practically has no free parameters. Changing the values of the parameters in the restricted range allowed by the related experimental estimates has almost no effect on the shape of the curves and results mainly in a variation of the zero load velocity that can be directly fitted to the measured data. In addition, the model is consistent with the measured pathway of the kinesin ATPase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have isolated a new type of ATP-dependent protease from Escherichia coli. It is the product of the heat-shock locus hslVU that encodes two proteins: HslV, a 19-kDa protein similar to proteasome beta subunits, and HslU, a 50-kDa protein related to the ATPase ClpX. In the presence of ATP, the protease hydrolyzes rapidly the fluorogenic peptide Z-Gly-Gly-Leu-AMC and very slowly certain other chymotrypsin substrates. This activity increased 10-fold in E. coli expressing heat-shock proteins constitutively and 100-fold in cells expressing HslV and HslU from a high copy plasmid. Although HslV and HslU could be coimmunoprecipitated from cell extracts of both strains with an anti-HslV antibody, these two components were readily separated by various types of chromatography. ATP stimulated peptidase activity up to 150-fold, whereas other nucleoside triphosphates, a nonhydrolyzable ATP analog, ADP, or AMP had no effect. Peptidase activity was blocked by the anti-HslV antibody and by several types of inhibitors of the eukaryotic proteasome (a threonine protease) but not by inhibitors of other classes of proteases. Unlike eukaryotic proteasomes, the HslVU protease lacked tryptic-like and peptidyl-glutamyl-peptidase activities. Electron micrographs reveal ring-shaped particles similar to en face images of the 20S proteasome or the ClpAP protease. Thus, HslV and HslU appear to form a complex in which ATP hydrolysis by HslU is essential for peptide hydrolysis by the proteasome-like component HslV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organelles in the axoplasm from the squid giant axon move along exogenous actin filaments toward their barbed ends. An approximately 235-kDa protein, the only band recognized by a pan-myosin antibody in Western blots of isolated axoplasmic organelles, has been previously proposed to be a motor for these movements. Here, we purify this approximately 235-kDa protein (p235) from axoplasm and demonstrate that it is a myosin, because it is recognized by a pan-myosin antibody and has an actin-activated Mg-ATPase activity per mg of protein 40-fold higher than that of axoplasm. By low-angle rotary shadowing, p235 differs from myosin II and it does not form bipolar filaments in low salt. The amino acid sequence of a 17-kDa protein that copurifies with p235 shows that it is a squid optic lobe calcium-binding protein, which is more similar by amino acid sequence to calmodulin (69% identity) than to the light chains of myosin II (33% identity). A polyclonal antibody to this light chain was raised by using a synthetic peptide representing the calcium binding domain least similar to calmodulin. We then cloned this light chain by reverse transcriptase-PCR and showed that this antibody recognizes the bacterially expressed protein but not brain calmodulin. In Western blots of sucrose gradient fractions, the 17-kDa protein is found in the organelle fraction, suggesting that it is a light chain of the p235 myosin that is also associated with organelles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mediatophore is a protein of approximately 200 kDa able to translocate acetylcholine in response to calcium. It was purified from the presynaptic plasma membranes of the electric organ nerve terminals. Mediatophore is a homooligomer of a 16-kDa subunit, homologous to the proteolipid of V-ATPase. Cells of the N18TG-2 neuronal line are not able to produce quantal acetylcholine release. We show here that transfection of N18TG-2 cells with a plasmid encoding the mediatophore subunit restored calcium-dependent release. The essential feature of such a release was its quantal nature, similar to what is observed in situ in cholinergic synapses from which mediatophore was purified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na+-Ca2+ exchanger and Ca2+ channel are two major sarcolemmal Ca2+-transporting proteins of cardiac myocytes. Although the Ca2+ channel is effectively regulated by protein kinase A-dependent phosphorylation, no enzymatic regulation of the exchanger protein has been identified as yet. Here we report that in frog ventricular myocytes, isoproterenol down-regulates the Na+-Ca2+ exchanger, independent of intracellular Ca2+ and membrane potential, by activation of the beta-receptor/adenylate-cyclase/cAMP-dependent cascade, resulting in suppression of transmembrane Ca2+ transport via the exchanger and providing for the well-documented contracture-suppressant effect of the hormone on frog heart. The beta-blocker propranolol blocks the isoproterenol effect, whereas forskolin, cAMP, and theophylline mimic it. In the frog heart where contractile Ca2+ is transported primarily by the Na+-Ca2+ exchanger, the beta-agonists' simultaneous enhancement of Ca2+ current, ICa, and suppression of Na+-Ca2+ exchanger current, INa-Ca would enable the myocyte to develop force rapidly at the onset of depolarization (enhancement of ICa) and to decrease Ca2+ influx (suppression of INa-Ca) later in the action potential. This unique adrenergically induced shift in the Ca2+ influx pathways may have evolved in response to paucity of the sarcoplasmic reticulum Ca2+-ATPase/phospholamban complex and absence of significant intracellular Ca2+ release pools in the frog heart.