996 resultados para ARGON ABUNDANCES
Resumo:
Metal-insulator-semiconductor capacitors using aluminum Bi2O3 and silicon have been studied for varactor applications. Reactively sputtered Bi2O3 films which under suitable proportions of oxygen and argon and had high resistivity suitable for device applications showed a dielectric constant of 25. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
The rate of NADH oxidation with oxygen as the acceptor is very low in mouse liver plasma membrane and erythrocyte membrane. When vanadate is added, this rate is stimulated 10- to 20-fold. The absorption spectrum of vanadate does not change with the disappearance of NADH. The reaction is inhibited by superoxide dismutase, and there is no activity under an argon atmosphere. This indicates that oxygen is the electron acceptor and the reaction is mediated by superoxide. The vanadate stimulation is not limited to plasma membrane. Golgi apparatus and endoplasmic reticulum show similar increase in NADH oxidase activity when vanadate is added. The endomembranes have significant vanadate-stimulated activity with both NADH and NADPH. The vanadate-stimulated NADH oxidase in plasma membrane is inhibited by compounds, which inhibit NADH dehydrogenase activity: catechols, anthracycline drugs and manganese. This activity is stimulated by high phosphate and sulfate anion concentrations.
Resumo:
Invasive grasses are among the worst threats to native biodiversity, but the mechanisms causing negative effects are poorly understood. To investigate the impact of an invasive grass on reptiles, we compared the reptile assemblages that used native kangaroo grass (Themeda triandra), and black spear grass (Heteropogon contortus), to those using habitats invaded by grader grass (Themeda quadrivalvis). There were significantly more reptile species, in greater abundances, in native kangaroo and black spear grass than in invasive grader grass. To understand the sources of negative responses of reptile assemblages to the weed, we compared habitat characteristics, temperatures within grass clumps, food availability and predator abundance among these three grass habitats. Environmental temperatures in grass, invertebrate food availability, and avian predator abundances did not differ among the habitats, and there were fewer reptiles that fed on other reptiles in the invaded than in the native grass sites. Thus, native grass sites did not provide better available thermal environments within the grass, food, or opportunities for predator avoidance. We suggest that habitat structure was the critical factor driving weed avoidance by reptiles in this system, and recommend that the maintenance of heterogeneous habitat structure, including clumping native grasses, with interspersed bare ground, and leaf litter are critical to reptile biodiversity.
Resumo:
Experimental results on the effect of energy deposition using an electric arc discharge, upstream of a 60° half angle blunt cone configuration in a hypersonic flow is reported.Investigations involving drag measurements and high speed schlieren flow visualization have been carried out in hypersonic shock tunnel using air and argon as the test gases; and an unsteady drag reduction of about 50% (maximum reduction) has been observed in the energy deposition experiments done in argon environment. These studies also show that the effect of discharge on the flow field is more pronounced in argon environment as compared to air, which confirms that thermal effects are mainly responsible for flow alteration in presence of the discharge.
Resumo:
The metabolism of an organism consists of a network of biochemical reactions that transform small molecules, or metabolites, into others in order to produce energy and building blocks for essential macromolecules. The goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those biochemical reactions. In a steady state, the sum of the fluxes that produce an internal metabolite is equal to the sum of the fluxes that consume the same molecule. Thus the steady state imposes linear balance constraints to the fluxes. In general, the balance constraints imposed by the steady state are not sufficient to uncover all the fluxes of a metabolic network. The fluxes through cycles and alternative pathways between the same source and target metabolites remain unknown. More information about the fluxes can be obtained from isotopic labelling experiments, where a cell population is fed with labelled nutrients, such as glucose that contains 13C atoms. Labels are then transferred by biochemical reactions to other metabolites. The relative abundances of different labelling patterns in internal metabolites depend on the fluxes of pathways producing them. Thus, the relative abundances of different labelling patterns contain information about the fluxes that cannot be uncovered from the balance constraints derived from the steady state. The field of research that estimates the fluxes utilizing the measured constraints to the relative abundances of different labelling patterns induced by 13C labelled nutrients is called 13C metabolic flux analysis. There exist two approaches of 13C metabolic flux analysis. In the optimization approach, a non-linear optimization task, where candidate fluxes are iteratively generated until they fit to the measured abundances of different labelling patterns, is constructed. In the direct approach, linear balance constraints given by the steady state are augmented with linear constraints derived from the abundances of different labelling patterns of metabolites. Thus, mathematically involved non-linear optimization methods that can get stuck to the local optima can be avoided. On the other hand, the direct approach may require more measurement data than the optimization approach to obtain the same flux information. Furthermore, the optimization framework can easily be applied regardless of the labelling measurement technology and with all network topologies. In this thesis we present a formal computational framework for direct 13C metabolic flux analysis. The aim of our study is to construct as many linear constraints to the fluxes from the 13C labelling measurements using only computational methods that avoid non-linear techniques and are independent from the type of measurement data, the labelling of external nutrients and the topology of the metabolic network. The presented framework is the first representative of the direct approach for 13C metabolic flux analysis that is free from restricting assumptions made about these parameters.In our framework, measurement data is first propagated from the measured metabolites to other metabolites. The propagation is facilitated by the flow analysis of metabolite fragments in the network. Then new linear constraints to the fluxes are derived from the propagated data by applying the techniques of linear algebra.Based on the results of the fragment flow analysis, we also present an experiment planning method that selects sets of metabolites whose relative abundances of different labelling patterns are most useful for 13C metabolic flux analysis. Furthermore, we give computational tools to process raw 13C labelling data produced by tandem mass spectrometry to a form suitable for 13C metabolic flux analysis.
Resumo:
Invasive grasses are among the worst threats to native biodiversity, but the mechanisms causing negative effects are poorly understood. To investigate the impact of an invasive grass on reptiles, we compared the reptile assemblages that used native kangaroo grass (Themeda triandra), and black spear grass (Heteropogon contortus), to those using habitats invaded by grader grass (Themeda quadrivalvis). There were significantly more reptile species, in greater abundances, in native kangaroo and black spear grass than in invasive grader grass. To understand the sources of negative responses of reptile assemblages to the weed, we compared habitat characteristics, temperatures within grass clumps, food availability and predator abundance among these three grass habitats. Environmental temperatures in grass, invertebrate food availability, and avian predator abundances did not differ among the habitats, and there were fewer reptiles that fed on other reptiles in the invaded than in the native grass sites. Thus, native grass sites did not provide better available thermal environments within the grass, food, or opportunities for predator avoidance. We suggest that habitat structure was the critical factor driving weed avoidance by reptiles in this system, and recommend that the maintenance of heterogeneous habitat structure, including clumping native grasses, with interspersed bare ground, and leaf litter are critical to reptile biodiversity.
Resumo:
The thermal decomposition of rare-earth trioxalatocobaltates LnCo(C2O4)3 · x H2O, where Ln = La, Pr, Nd, has been studied in flowing atmospheres of air/oxygen, argon/ nitrogen, carbon dioxide and a vacuum. The compounds decompose through three major steps, viz. dehydration, decomposition of the oxalate to an intermediate carbonate, which further decomposes to yield rare-earth cobaltite as the final product. The formation of the final product is influenced by the surrounding gas atmosphere. Studies on the thermal decomposition of photodecomposed lanthanum trioxalatocobaltate and a mechanical mixture of lanthanum oxalate and cobalt oxalate in 1 : 2 molar ratio reveal that the decomposition behaviour of the two samples is different. The drawbacks of the decomposition scheme proposed earlier have been pointed out, and logical schemes based on results obtained by TG, DTA, DTG, supplemented by various physico-chemical techniques such as gas and chemical analyses, IR and mass spectroscopy, surface area and magnetic susceptibility measurements and X-ray powder diffraction methods, have been proposed for the decomposition in air of rare-earth trioxalatocobaltates as well as for the photoreduced lanthanum salt and a mechanical mixture of lanthanum and cobalt oxalates.
Resumo:
The thermal decomposition of sodium azide has been studied in the temperature range 240–360°C in vacuum and under pressure of an inert gas, argon. The results show that the decomposition is partial 360°C. From the observations made in the present work, namely: (i) the decomposition is incomplete both under vacuum and inert gas; (ii) mass spectrometric studies do not reveal any decrease in the intensity of the background species, CO+2, CO+, H2O+, and (iii) sodium metal remains in the ‘free state’ as seen by the formation of a metallic mirror at temperatures above 300°C, it has been argued that the partial nature of decompostion is due to the confinement of the decomposition to intermosaic regions within the lattice.
Resumo:
Compositional data analysis usually deals with relative information between parts where the total (abundances, mass, amount, etc.) is unknown or uninformative. This article addresses the question of what to do when the total is known and is of interest. Tools used in this case are reviewed and analysed, in particular the relationship between the positive orthant of D-dimensional real space, the product space of the real line times the D-part simplex, and their Euclidean space structures. The first alternative corresponds to data analysis taking logarithms on each component, and the second one to treat a log-transformed total jointly with a composition describing the distribution of component amounts. Real data about total abundances of phytoplankton in an Australian river motivated the present study and are used for illustration.
Resumo:
Despite much research on forest biodiversity in Fennoscandia, the exact mechanisms of species declines in dead-wood dependent fungi are still poorly understood. In particular, there is only limited information on why certain fungal species have responded negatively to habitat loss and fragmentation, while others have not. Understanding the mechanisms behind species declines would be essential for the design and development of ecologically effective and scientifically informed conservation measures, and management practices that would promote biodiversity in production forests. In this thesis I study the ecology of polypores and their responses to forest management, with a particular focus on why some species have declined more than others. The data considered in the thesis comprise altogether 98,318 dead-wood objects, with 43,085 observations of 174 fungal species. Out of these, 1,964 observations represent 58 red-listed species. The data were collected from 496 sites, including woodland key habitats, clear-cuts with retention trees, mature managed forests, and natural or natural-like forests in southern Finland and Russian Karelia. I show that the most relevant way of measuring resource availability can differ to a great extent between species seemingly sharing the same resources. It is thus critical to measure the availability of resources in a way that takes into account the ecological requirements of the species. The results show that connectivity at the local, landscape and regional scales is important especially for the highly specialized species, many of which are also red-listed. Habitat loss and fragmentation affect not only species diversity but also the relative abundances of the species and, consequently, species interactions and fungal successional pathways. Changes in species distributions and abundances are likely to affect the food chains in which wood-inhabiting fungi are involved, and thus the functioning of the whole forest ecosystem. The findings of my thesis highlight the importance of protecting well-connected, large and high-quality forest areas to maintain forest biodiversity. Small habitat patches distributed across the landscape are likely to contribute only marginally to protection of red-listed species, especially if habitat quality is not substantially higher than in ordinary managed forest, as is the case with woodland key habitats. Key habitats might supplement the forest protection network if they were delineated larger and if harvesting of individual trees was prohibited in them. Taking the landscape perspective into account in the design and development of conservation measures is critical while striving to halt the decline of forest biodiversity in an ecologically effective manner.
Resumo:
Thin films of indium-tin oxide have been deposited by DC diode sputtering from an indium-tin alloy target in an argon, hydrogen and oxygen atmosphere. Films with sheet resistance of 11 ohms/square and 80% light transmission have been obtained. The effect of cathode composition and gas mixture on sheet resistance and optical transmission properties of the films have been studied.
Resumo:
This dissertation explored the ecological dimension of ecologically sustainable forest management in boreal forests, and factors of the socio-cultural dimension that affect how the concept of ecologically sustainable forest management is defined. My approach was problem-oriented and generalistic-holistic. I examined associations between the abundances of wildlife groups (grouse, large predators, small predators, ungulates) and Siberian flying squirrels, and their co-occurrence with tree structural characteristics at the regional level. The trade-offs between ecological, social and economic sustainability in forestry were explored at the regional scale. I identified a potential 'shopping basket' of regional indicators for ecologically sustainable forest management, combining the relative abundance of Siberian flying squirrels, a wildlife richness index (WRI) for grouse, diversity indices of saw-timber trees, tree age classes and the proportion of old-growth (> 120 yr) forests. I suggest that the close association between forestry activity, the proportion of young forests (< 40 yr) and a WRI for small predators can be considered as potential 'alarm bells' for regions in which the creation of trade-offs (negative relationships) between economic and ecological components of sustainable forestry is ongoing. Explorative analyses revealed negative relationships between forestry activity and a WRI of 16 game species, the WRI for grouse and tree age diversity. Socially sustainable communities compete less intensively with ecological components of forests than communities where forestry is important. Interestingly, forest ownership types (farmers, other private forest owners, the forestry industry, the State) correlated significantly with the co-occurrence of flying squirrels, grouse and diverse forest structural characteristics rather than, for instance, with the total number of protection areas, suggesting that private forest ownership can lead to increased ecological sustainability. I examined forest actors’ argumentation to identify characteristics that affect the interpretation of ecologically sustainable forest management. Four argumentation frame types were constructed: information, work, experience and own position based. These differed in terms of their emphasis on external experts or own experiences. The closer ecologically sustainable forest management is to the forest actor’s daily life, the more profiled policy tools (counselling, learning through experiences) are needed to guide management behaviour to become more ecologically sound. I illustrated that forest actors interpret, use and understand information through meaningful framing. I analysed the extent to which ecological research information has been perceived in the Forestry Development Centre TAPIO’s recommendations and revised PEFC Finland criteria. We noticed that the political value for decaying wood was much lower in PEFC Finland critera (4 m3) than could be expected as a socially acceptable level (9 m3) or ecologically sound (10-20 m3). I consider it important for scientists to join political discourses and become involved in policy making concerning sustainable forest management to learn to present their results in a way that is reasonable from the user’s perspective.
Resumo:
While environmental variation is an ubiquitous phenomenon in the natural world which has for long been appreciated by the scientific community recent changes in global climatic conditions have begun to raise consciousness about the economical, political and sociological ramifications of global climate change. Climate warming has already resulted in documented changes in ecosystem functioning, with direct repercussions on ecosystem services. While predicting the influence of ecosystem changes on vital ecosystem services can be extremely difficult, knowledge of the organisation of ecological interactions within natural communities can help us better understand climate driven changes in ecosystems. The role of environmental variation as an agent mediating population extinctions is likely to become increasingly important in the future. In previous studies population extinction risk in stochastic environmental conditions has been tied to an interaction between population density dependence and the temporal autocorrelation of environmental fluctuations. When populations interact with each other, forming ecological communities, the response of such species assemblages to environmental stochasticity can depend, e.g., on trophic structure in the food web and the similarity in species-specific responses to environmental conditions. The results presented in this thesis indicate that variation in the correlation structure between species-specific environmental responses (environmental correlation) can have important qualitative and quantitative effects on community persistence and biomass stability in autocorrelated (coloured) environments. In addition, reddened environmental stochasticity and ecological drift processes (such as demographic stochasticity and dispersal limitation) have important implications for patterns in species relative abundances and community dynamics over time and space. Our understanding of patterns in biodiversity at local and global scale can be enhanced by considering the relevance of different drift processes for community organisation and dynamics. Although the results laid out in this thesis are based on mathematical simulation models, they can be valuable in planning effective empirical studies as well as in interpreting existing empirical results. Most of the metrics considered here are directly applicable to empirical data.
Resumo:
The Capercaillie (Tetrao urogallus L.) is often used as a focal species for landscape ecological studies: the minimum size for its lekking area is 300 ha, and the annual home range for an individual may cover 30 80 km2. In Finland, Capercaillie populations have decreased by approximately 40 85%, with the declines likely to have started in the 1940s. Although the declines have partly stabilized from the 1990s onwards, it is obvious that the negative population trend was at least partly caused by changes in human land use. The aim of this thesis was to study the connections between human land use and Capercaillie populations in Finland, using several spatial and temporal scales. First, the effect of forest age structure on Capercaillie population trends was studied in 18 forestry board districts in Finland, during 1965 1988. Second, the abundances of Capercaillie and Moose (Alces alces L.) were compared in terms of several land-use variables on a scale of 50 × 50 km grids and in five regions in Finland. Third, the effects of forest cover and fine-grain forest fragmentation on Capercaillie lekking area persistence were studied in three study locations in Finland, on 1000 and 3000 m spatial scales surrounding the leks. The analyses considering lekking areas were performed with two definitions for forest: > 60 and > 152 m3ha 1 of timber volume. The results show that patterns and processes at large spatial scales strongly influence Capercaillie in Finland. In particular, in southwestern and eastern Finland, high forest cover and low human impact were found to be beneficial for this species. Forest cover (> 60 m3ha 1 of timber) surrounding the lekking sites positively affected lekking area persistence only at the larger landscape scale (3000 m radius). The effects of older forest classes were hard to assess due to scarcity of older forests in several study areas. Young and middle-aged forest classes were common in the vicinity of areas with high Capercaillie abundances especially in northern Finland. The increase in the amount of younger forest classes did not provide a good explanation for Capercaillie population decline in 1965 1988. In addition, there was no significant connection between mature forests (> 152 m3ha 1 of timber) and lekking area persistence in Finland. It seems that in present-day Finnish landscapes, area covered with old forest is either too scarce to efficiently explain the abundance of Capercaillie and the persistence of the lekking areas, or the effect of forest age is only important when considering smaller spatial scales than the ones studied in this thesis. In conclusion, larger spatial scales should be considered for assessing the future Capercaillie management. According to the proposed multi-level planning, the first priority should be to secure the large, regional-scale forest cover, and the second priority should be to maintain fine-grained, heterogeneous structure within the separate forest patches. A management unit covering hundreds of hectares, or even tens or hundreds of square kilometers, should be covered, which requires regional-level land-use planning and co-operation between forest owners.
Resumo:
Although changes in urban forest vegetation have been documented in previous Finnish studies, the reasons for these changes have not been studied explicitly. Especially, the consequences of forest fragmentation, i.e. the fact that forest edges receive more solar radiation, wind and air-borne nutrients than interiors have been ignored. In order to limit the change in urban forest vegetation we need to know why it occurs. Therefore, the effects of edges and recreational use of urban forests on vegetation were investigated together in this thesis to reveal the relative strengths of these effects and to provide recommendations for forest management. Data were collected in the greater Helsinki area (in the cities of Helsinki, Vantaa and Espoo, and in the municipalities of Sipoo and Tuusula) and in the Lahti region (in the city of Lahti and in the municipality of Hollola) by means of systematic and randomized vegetation and soil sampling and tree measurements. Sample plots were placed from the forest edges to the interiors to investigate the effects of forest edges, and on paths of different levels of wear and off these paths to investigate the effects of trampling. The natural vegetation of mesic and sub-xeric forest site types studied was sensitive both to the effects of the edge and to trampling. The abundances of dwarf shrubs and bryophytes decreased, while light- and nitrogen-demanding herbs and grasses - and especially Sorbus aucuparia – were favoured at the edges and next to the paths. Results indicated that typical forest site types at the edges are changing toward more nitrophilic vegetation communities. Covers of the most abundant forest species decreased considerably – even tens of percentages – from interiors to the edges indicating strong edge effects. These effects penetrated at least up to 50 m from the forest edges into the interiors, especially at south to west facing open edges. The effects of trampling were pronounced on paths and even low levels of trampling decreased the abundances of certain species considerably. The effects of trampling extended up to 8 m from path edges. Results showed that the fragmentation of urban forest remnants into small and narrow patches should be avoided in order to maintain natural forest understorey vegetation in the urban setting. Thus, urban forest fragments left within urban development should be at least 3 ha in size, and as circular as possible. Where the preservation of representative original forest interior vegetation is a management aim, closed edges with conifers can act as an effective barrier against solar radiation, wind and urban load, thereby restricting the effects of the edge. Tree volume at the edge should be at least 225-250 m3 ha-1 and the proportion of conifers (especially spruce) 80% or more of the tree species composition. Closed, spruce-dominated edges may also prevent the excessive growth of S. aucuparia saplings at urban forest edges. In addition, closed edges may guide people’s movements to the maintained paths, thus preventing the spontaneous creation of dense path networks. In urban areas the effects of edges and trampling on biodiversity may be considerable, and are important to consider when the aim of management is to prevent the development of homogeneous herb-grass dominated vegetation communities, as was observed at the investigated edges.