991 resultados para ANIMAL TISSUES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foods derived from animals are an important source of nutrients for humans. Concerns have been raised that due to their SFA content, dairy foods may increase the risk of cardiometabolic disease. Prospective studies do not indicate an association between milk consumption and increased disease risk although there are less data for other dairy foods. SFA in dairy products can be partially replaced by cis-MUFA through nutrition of the dairy cow although there are too few human studies to conclude that such modification leads to reduced chronic disease risk. Intakes of LCn-3 FA are sub-optimal in many countries and while foods such as poultry meat can be enriched by inclusion of fish oil in the diet of the birds, fish oil is expensive and has an associated risk that the meat will be oxidatively unstable. Novel sources of LCn-3 FA such as kirll oil, algae, and genetically modified plants may prove to be better candidates for meat enrichment. The value of FA-modified foods cannot be judged by their FA composition alone and there needs to be detailed human intervention studies carried out before judgements concerning improved health value can be made. Practical applications: The amount and FA composition of dietary lipids are known to contribute to the risk of chronic disease in humans which is increasing and becoming very costly to treat. The use of animal nutrition to improve the FA composition of staple foods such as dairy products and poultry meat has considerable potential to reduce chronic risk at population level although judgements must not be based simply on FA composition of the foods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter considers a perhaps unexpected connection between disability and animal studies, given disability studies' understandable reluctance to be associated with animal liberation/rights struggles. It finds that both fields remain rooted in ideas of experience and feeling, or the notion of an essential embodied experience, even while they offer up critiques of the way essentialism operates more broadly to disenfranchise or disadvantage the groups they represent. The chapter goes on to analyse what the implications are of this notion of 'embodiment' and the materialism that accompanies it, it foregrounds the contradictions that ensue, and then discusses what this means for the way political action is (and can be) conceived of.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The aim of this study is to verify the regenerative potential of particulate anorganic bone matrix synthetic peptide-15 (ABM-P-15) in class III furcation defects associated or not with expanded polytetrafluoroethylene membranes. Methods: Class III furcation defects were produced in the mandibular premolars (P2, P3, and P4) of six dogs and filled with impression material. The membranes and the bone grafts were inserted into P3 and P4, which were randomized to form the test and control groups, respectively; P2 was the negative control group. The animals were sacrificed 3 months post-treatment. Results: Histologically, the complete closure of class III furcation defects was not observed in any of the groups. Partial periodontal regeneration with similar morphologic characteristics among the groups was observed, however, through the formation of new cementum, periodontal ligament, and bone above the notch. Histologic analysis showed granules from the bone graft surrounded by immature bone matrix and encircled by newly formed tissue in the test group. The new bone formation area found in the negative control group was 2.28 +/- 2.49 mm(2) and in the test group it was 6.52 +/- 5.69 mm(2), which showed statistically significant differences for these groups considering this parameter (Friedman test P <0.05). There was no statistically significant difference among the negative control, control, and test groups for the other parameters. Conclusions: The regenerative potential of ABM-P-15 was demonstrated through new bone formation circumscribing and above the graft particles. The new bone also was accompanied by the formation of new cementum and periodontal ligament fibers. J Periodontol 2010;81:594-603.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the factors that contribute to the papilla formation and crestal bone preservation between contiguous implants, this animal study clinically and radiographically evaluated the interimplant distances (IDs) of 2 and 3 mm and the placement depths of Morse cone connection implants restored with platform switch. Bilateral mandibular premolars of 6 dogs were extracted, and after 12 weeks, the implants were placed. Four experimental groups were constituted: subcrestally with ID of 2 mm (2 SCL) and 3 mm (3 SCL) and crestally with ID of 2 mm (2 CL) and 3 mm (3 CL). Metallic crowns were immediately installed with a distance of 3 mm between the contact point and the bone crest. Eight weeks later, clinical measurements were performed to evaluate papilla formation, and radiographic images were taken to analyze the crestal bone remodeling. The subcrestal groups achieved better levels of papillae formation when compared with the crestal groups, with a significant difference between the 3 SCL and 3 CL groups (P = .026). Radiographically, the crestal bone preservation was also better in the subcrestal groups, with statistically significant differences between the 2SCL and 2CL groups (P = .002) and between the 3SCL and 3CL groups (P = .008). With the present conditions, it could be concluded that subcrestal implant placement had a positive impact on papilla formation and crestal bone preservation, which could favor the esthetic of anterior regions. However, the IDs of 2 and 3 mm did not show significantly different results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forty-nine typical and atypical enteropathogenic Escherichia coli (EPEC) strains belonging to different serotypes and isolated from humans, pets (cats and dogs), farm animals (bovines, sheep, and rabbits), and wild animals (monkeys) were investigated for virulence markers and clonal similarity by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The virulence markers analyzed revealed that atypical EPEC strains isolated from animals have the potential to cause diarrhea in humans. A close clonal relationship between human and animal isolates was found by MLST and PFGE. These results indicate that these animals act as atypical EPEC reservoirs and may represent sources of infection for humans. Since humans also act as a reservoir of atypical EPEC strains, the cycle of mutual infection of atypical EPEC between animals and humans, mainly pets and their owners, cannot be ruled out since the transmission dynamics between the reservoirs are not yet clearly understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect of human-animal interaction (HAI) and the stress response on the quality of embryo production in superovulated Nelore (Bos indicus) cattle, under tropical conditions. Thirty-two females underwent a superovulation protocol for 5 days. Cortisol concentrations were determined in blood plasma collected on days 0, 4, and 5. Artificial insemination was performed on days 4 and 5, and nonsurgical embryo flushing on day 11. Embryo production and viability were determined. Human stimulation, animal behaviors, accidents, and handling time were recorded to assess HAI. Cattle age was negatively correlated with accidents, frequency of aversive behaviors, and negative stimuli by stockperson during transit through corral compartments to receive superovulation treatments. The factor analysis revealed two distinct groups. The first group was called stressed and had higher cortisol concentration than the nonstressed group, 16.0 +/- 2.1 and 12.5 +/- 1.0 ng/mL, respectively. Comparisons between these groups showed that the frequency of voice emissions by the stockperson and the number of accidents were higher in the stressed group, and also, the mean handling time was longer in the stressed group than for the nonstressed. As a result, viability rate of the embryos was 19% lower in the stressed group (P < 0.05). This indicates that intensive negative HAI is likely related to stress, which affects embryo production in a superovulation program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The placenta of mammals is a structure formed by the juxtaposition of the fetal membranes and the maternal tissues. The main function of the placenta is to regulate the physiological interchange between the fetus and the mother as well as to operate as an important endocrine organ during the gestation. The placentomal fusions were characterized throughout gestation of cattle using macroscopic, histological and flow cytometry analyses. Analyzing the cell cycle phases with a flow cytometry, a balance between the G2M phase and apoptosis was observed, suggesting that the placentomal fusions do not interfere in the placentary maturation process, which is a pre-requirement for the fetal-maternal disconnection and the release of fetal membrane. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of a healthy cloned calf is dependent on a multitude of successful steps, including reprogramming mediated by the oocyte, the development of a functional placenta, adequate maternal-fetal interaction, the establishment of a physiological metabolic setting and the formation of a complete set of well-differentiated cells that will eventually result in well-characterised and fully competent tissues and organs. Although the efficiency of nuclear transfer has improved significantly since the first report of a somatic cell nuclear transfer-derived animal, there are many descriptions of anomalies concerning cloned calves leading to high perinatal morbidity and mortality. The present article discusses some our experience regarding perinatal and neonatal procedures for cloned Zebu cattle (B. indicus) that has led to improved survival rates in Nellore cloned calves following the application of such `labour-intensive technology`.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urea is an important nitrogen source for some bromeliad species, and in nature it is derived from the excretion of amphibians, which visit or live inside the tank water. Its assimilation is dependent on the hydrolysis by urease (EC: 3.5.1.5), and although this enzyme has been extensively studied to date, little information is available about its cellular location. In higher plants, this enzyme is considered to be present in the cytoplasm. However, there is evidence that urease is secreted by the bromeliad Vriesea gigantea, implying that this enzyme is at least temporarily located in the plasmatic membrane and cell wall. In this article, urease activity was measured in different cell fractions using leaf tissues of two bromeliad species: the tank bromeliad V. gigantea and the terrestrial bromeliad Ananas comosus (L.) Merr. In both species, urease was present in the cell wall and membrane fractions, besides the cytoplasm. Moreover, a considerable difference was observed between the species: while V. gigantea had 40% of the urease activity detected in the membranes and cell wall fractions, less than 20% were found in the same fractions in A. comosus. The high proportion of urease found in cell wall and membranes in V. gigantea was also investigated by cytochemical detection and immunoreaction assay. Both approaches confirmed the enzymatic assay. We suggest this physiological characteristic allows tank bromeliads to survive in a nitrogen-limited environment, utilizing urea rapidly and efficiently and competing successfully for this nitrogen source against microorganisms that live in the tank water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social behavior depends on the integrity of social brain circuitry. The temporal lobe is an important part of the social brain, and manifests morphological and functional alterations in autism spectrum disorders (ASD). Rats with temporal lobe epilepsy (TLE), induced with pilocarpine, were subjected to a social discrimination test that has been used to investigate potential animal models of ASD, and the results were compared with those for the control group. Rats with TLE exhibited fewer social behaviors than controls. No differences were observed in nonsocial behavior between groups. The results suggest an important role for the temporal lobe in regulating social behaviors. This animal model might be used to explore some questions about ASD pathophysiology. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dystrophin is a protein found at the plasmatic membrane in muscle and postsynaptic membrane of some neurons, where it plays an important role on synaptic transmission and plasticity. Its absence is associated with Duchenne`s muscular dystrophy (DMD), in which cognitive impairment is found. Oxidative stress appears to be involved in the physiopathology of DMD and its cognitive dysfunction. In this regard, the present study investigated oxidative parameters (lipid and protein peroxidation) and antioxidant enzymes activities (superoxide dismutase and catalase) in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx and normal C57BL10 mice. We observed (I) reduced lipid peroxidation in striatum and protein peroxidation in cerebellum and prefrontal cortex; (2) increased superoxide dismutase activity in cerebellum, prefrontal cortex, hippocampus and striatum: and (3) reduced catalase activity in striatum. It seems by our results, that the superoxide dismutase antioxidant mechanism is playing a protective role against lipid and protein peroxidation in mdx mouse brain. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse, both presenting significant reduction of alpha 2-laminin in the muscle and a severe phenotype. The myodystrophy mouse (Large(myd)) harbors a mutation in the glycosyltransferase Large, which leads to altered glycosylation of alpha-DG, and also a severe phenotype. Other informative models for muscle proteins include the knockout mouse for myostatin, which demonstrated that this protein is a negative regulator of muscle growth. Additionally, the stress syndrome in pigs, caused by mutations in the porcine RYR1 gene, helped to localize the gene causing malignant hypertermia and Central Core myopathy in humans. The study of animal models for genetic diseases, in spite of the existence of differences in some phenotypes, can provide important clues to the understanding of the pathogenesis of these disorders and are also very valuable for testing strategies for therapeutic approaches.