989 resultados para AMK2-BCH-TR
Resumo:
With the increased use of "Virtual Machines" (VMs) as vehicles that isolate applications running on the same host, it is necessary to devise techniques that enable multiple VMs to share underlying resources both fairly and efficiently. To that end, one common approach is to deploy complex resource management techniques in the hosting infrastructure. Alternately, in this paper, we advocate the use of self-adaptation in the VMs themselves based on feedback about resource usage and availability. Consequently, we define a "Friendly" VM (FVM) to be a virtual machine that adjusts its demand for system resources, so that they are both efficiently and fairly allocated to competing FVMs. Such properties are ensured using one of many provably convergent control rules, such as AIMD. By adopting this distributed application-based approach to resource management, it is not necessary to make assumptions about the underlying resources nor about the requirements of FVMs competing for these resources. To demonstrate the elegance and simplicity of our approach, we present a prototype implementation of our FVM framework in User-Mode Linux (UML)-an implementation that consists of less than 500 lines of code changes to UML. We present an analytic, control-theoretic model of FVM adaptation, which establishes convergence and fairness properties. These properties are also backed up with experimental results using our prototype FVM implementation.
Resumo:
Recent work in sensor databases has focused extensively on distributed query problems, notably distributed computation of aggregates. Existing methods for computing aggregates broadcast queries to all sensors and use in-network aggregation of responses to minimize messaging costs. In this work, we focus on uniform random sampling across nodes, which can serve both as an alternative building block for aggregation and as an integral component of many other useful randomized algorithms. Prior to our work, the best existing proposals for uniform random sampling of sensors involve contacting all nodes in the network. We propose a practical method which is only approximately uniform, but contacts a number of sensors proportional to the diameter of the network instead of its size. The approximation achieved is tunably close to exact uniform sampling, and only relies on well-known existing primitives, namely geographic routing, distributed computation of Voronoi regions and von Neumann's rejection method. Ultimately, our sampling algorithm has the same worst-case asymptotic cost as routing a point-to-point message, and thus it is asymptotically optimal among request/reply-based sampling methods. We provide experimental results demonstrating the effectiveness of our algorithm on both synthetic and real sensor topologies.
Resumo:
We demonstrate that if two probability distributions D and E of sufficiently small min-entropy have statistical difference ε, then the direct-product distributions D^l and E^l have statistical difference at least roughly ε\s√l, provided that l is sufficiently small, smaller than roughly ε^{4/3}. Previously known bounds did not work for few repetitions l, requiring l>ε^2.
Resumo:
A novel technique to detect and localize periodic movements in video is presented. The distinctive feature of the technique is that it requires neither feature tracking nor object segmentation. Intensity patterns along linear sample paths in space-time are used in estimation of period of object motion in a given sequence of frames. Sample paths are obtained by connecting (in space-time) sample points from regions of high motion magnitude in the first and last frames. Oscillations in intensity values are induced at time instants when an object intersects the sample path. The locations of peaks in intensity are determined by parameters of both cyclic object motion and orientation of the sample path with respect to object motion. The information about peaks is used in a least squares framework to obtain an initial estimate of these parameters. The estimate is further refined using the full intensity profile. The best estimate for the period of cyclic object motion is obtained by looking for consensus among estimates from many sample paths. The proposed technique is evaluated with synthetic videos where ground-truth is known, and with American Sign Language videos where the goal is to detect periodic hand motions.
Resumo:
Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation approaches. This paper describes an alternative formulation for dense scene flow estimation that provides convincing results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. To handle the aperture problems inherent in the estimation task, a multi-scale method along with a novel adaptive smoothing technique is used to gain a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization-two problems commonly associated with basic multi-scale approaches. Internally, the framework generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than standard stereo and optical flow methods allow. Experiments with synthetic and real test data demonstrate the effectiveness of the approach.
Resumo:
In gesture and sign language video sequences, hand motion tends to be rapid, and hands frequently appear in front of each other or in front of the face. Thus, hand location is often ambiguous, and naive color-based hand tracking is insufficient. To improve tracking accuracy, some methods employ a prediction-update framework, but such methods require careful initialization of model parameters, and tend to drift and lose track in extended sequences. In this paper, a temporal filtering framework for hand tracking is proposed that can initialize and reset itself without human intervention. In each frame, simple features like color and motion residue are exploited to identify multiple candidate hand locations. The temporal filter then uses the Viterbi algorithm to select among the candidates from frame to frame. The resulting tracking system can automatically identify video trajectories of unambiguous hand motion, and detect frames where tracking becomes ambiguous because of occlusions or overlaps. Experiments on video sequences of several hundred frames in duration demonstrate the system's ability to track hands robustly, to detect and handle tracking ambiguities, and to extract the trajectories of unambiguous hand motion.
Resumo:
Hand signals are commonly used in applications such as giving instructions to a pilot for airplane take off or direction of a crane operator by a foreman on the ground. A new algorithm for recognizing hand signals from a single camera is proposed. Typically, tracked 2D feature positions of hand signals are matched to 2D training images. In contrast, our approach matches the 2D feature positions to an archive of 3D motion capture sequences. The method avoids explicit reconstruction of the 3D articulated motion from 2D image features. Instead, the matching between the 2D and 3D sequence is done by backprojecting the 3D motion capture data onto 2D. Experiments demonstrate the effectiveness of the approach in an example application: recognizing six classes of basketball referee hand signals in video.
Resumo:
With the increasing demand for document transfer services such as the World Wide Web comes a need for better resource management to reduce the latency of documents in these systems. To address this need, we analyze the potential for document caching at the application level in document transfer services. We have collected traces of actual executions of Mosaic, reflecting over half a million user requests for WWW documents. Using those traces, we study the tradeoffs between caching at three levels in the system, and the potential for use of application-level information in the caching system. Our traces show that while a high hit rate in terms of URLs is achievable, a much lower hit rate is possible in terms of bytes, because most profitably-cached documents are small. We consider the performance of caching when applied at the level of individual user sessions, at the level of individual hosts, and at the level of a collection of hosts on a single LAN. We show that the performance gain achievable by caching at the session level (which is straightforward to implement) is nearly all of that achievable at the LAN level (where caching is more difficult to implement). However, when resource requirements are considered, LAN level caching becomes much more desirable, since it can achieve a given level of caching performance using a much smaller amount of cache space. Finally, we consider the use of organizational boundary information as an example of the potential for use of application-level information in caching. Our results suggest that distinguishing between documents produced locally and those produced remotely can provide useful leverage in designing caching policies, because of differences in the potential for sharing these two document types among multiple users.
Resumo:
We analyzed the logs of our departmental HTTP server http://cs-www.bu.edu as well as the logs of the more popular Rolling Stones HTTP server http://www.stones.com. These servers have very different purposes; the former caters primarily to local clients, whereas the latter caters exclusively to remote clients all over the world. In both cases, our analysis showed that remote HTTP accesses were confined to a very small subset of documents. Using a validated analytical model of server popularity and file access profiles, we show that by disseminating the most popular documents on servers (proxies) closer to the clients, network traffic could be reduced considerably, while server loads are balanced. We argue that this process could be generalized so as to provide for an automated demand-based duplication of documents. We believe that such server-based information dissemination protocols will be more effective at reducing both network bandwidth and document retrieval times than client-based caching protocols [2].
Resumo:
Two polymorphic types σ and τ are said to be bicoercible if there is a coercion from σ to τ and conversely. We give a complete equational axiomatization of bicoercible types and prove that the relation of bicoercibility is decidable.
Resumo:
A problem with Speculative Concurrency Control algorithms and other common concurrency control schemes using forward validation is that committing a transaction as soon as it finishes validating, may result in a value loss to the system. Haritsa showed that by making a lower priority transaction wait after it is validated, the number of transactions meeting their deadlines is increased, which may result in a higher value-added to the system. SCC-based protocols can benefit from the introduction of such delays by giving optimistic shadows with high value-added to the system more time to execute and commit instead of being aborted in favor of other validating transactions, whose value-added to the system is lower. In this paper we present and evaluate an extension to SCC algorithms that allows for commit deferments.
Resumo:
Speculative service implies that a client's request for a document is serviced by sending, in addition to the document requested, a number of other documents (or pointers thereto) that the server speculates will be requested by the client in the near future. This speculation is based on statistical information that the server maintains for each document it serves. The notion of speculative service is analogous to prefetching, which is used to improve cache performance in distributed/parallel shared memory systems, with the exception that servers (not clients) control when and what to prefetch. Using trace simulations based on the logs of our departmental HTTP server http://cs-www.bu.edu, we show that both server load and service time could be reduced considerably, if speculative service is used. This is above and beyond what is currently achievable using client-side caching [3] and server-side dissemination [2]. We identify a number of parameters that could be used to fine-tune the level of speculation performed by the server.
Resumo:
This is an addendum to our technical report BUCS TR-94-014 of December 19, 1994. It clarifies some statements, adds information on some related research, includes a comparison with research be de Groote, and fixes two minor mistakes in a proof.
Resumo:
Modal matching is a new method for establishing correspondences and computing canonical descriptions. The method is based on the idea of describing objects in terms of generalized symmetries, as defined by each object's eigenmodes. The resulting modal description is used for object recognition and categorization, where shape similarities are expressed as the amounts of modal deformation energy needed to align the two objects. In general, modes provide a global-to-local ordering of shape deformation and thus allow for selecting which types of deformations are used in object alignment and comparison. In contrast to previous techniques, which required correspondence to be computed with an initial or prototype shape, modal matching utilizes a new type of finite element formulation that allows for an object's eigenmodes to be computed directly from available image information. This improved formulation provides greater generality and accuracy, and is applicable to data of any dimensionality. Correspondence results with 2-D contour and point feature data are shown, and recognition experiments with 2-D images of hand tools and airplanes are described.