993 resultados para ACUTE GLUTAMATE EXCITOTOXICITY
Resumo:
Study Objectives: "Gentle handling" has become a method of choice for 4-6 h sleep deprivation in mice, with repeated brief handling applied before sleep deprivation to induce habituation. To verify whether mice do indeed habituate was assess how 6 days of repeated brief handling impact on resting behavior, on stress, and on the subunit content of N-methyl-D-aspartate receptors (NMDARs) at hippocampal synapases, which is altered by sleep loss. We discuss whether repeated handling biases the outcome of subsequent sleep deprivation.Design: Adult C5BL/6J mice, maintained on a 12 h-12 h light-dark cycle, were left undistrubed for 3 days, then handled during 3 min daily for 6 days in the middle of the light phase. Mice were continuously monitored for their resting time serum conticosterona levels and synaptic NMDAR subunit composition were quantified.Results: Handling caused a similar to 25% reduction of resting time throughtout all handling days, After six, but not after one day of handling, mice had elevated serum corticosterone levels. Six-day handling augmented the presence of the NR2A subunit of NMDARs at hippocampal synapses.Conclusion: Repeated handling induces behavoir and neurochemical alterations that are absent in undisturbed animals. The presistently reduced resting time and the delayed increase in conticosterone levels indicate that mice do not habituate to handling over a 1-week period. Handling-induced modifications bias effects of gentle handling-induced sleep deprivation on sleep homeostasis, stress, glutamate receptor composition and signaling. A standardization of sleep deprivation procedures involving gengle handling will be important for unequivocally specifying how acute sleep loss affects brain function.
Resumo:
Glutamate cysteine ligase (GCL) catalyzes the rate-limiting step in the de novo synthesis of glutathione (GSH). The catalytic subunit (GCLC) of GCL contains a GAG trinucleotide-repeat (TNR) polymorphism within the 5'-untranslated region (5'-UTR) that has been associated with various human disorders. Although several studies suggest that this variation influences GSH content, its implication for GCLC expression remains unknown. To better characterize its functional significance, we performed reporter gene assays with constructs containing the complete GCLC 5'-UTR upstream of a luciferase gene. Transfection of these vectors into various human cell lines did not reveal any significant differences between 7, 8, 9, or 10 GAG repeats, under either basal or oxidative stress conditions. To correlate these results with the previously described down-regulation induced by the C-129T GCLC promoter polymorphism, combinations of both variations were tested. Interestingly, the -129T allele down-regulates gene expression when combined with 7 GAG but not with 8, 9, or 10 GAG TNRs. This observation was confirmed in primary fibroblast cells, in which the combination of GAG TNR 7/7 and -129C/T genotypes decreased the GCLC protein level. These results provide evidence that interaction of the two variations can efficiently impair GCLC expression and thus suggest its involvement in the pathogenesis of diseases related to GSH metabolism.
Resumo:
Seizures appear at stroke presentation, during the acute phase or as a late complication of stroke. Thrombolysis has not been investigated as a risk factor despite its potential neurotoxic effect. We try to identify risk factors for seizures during the acute phase of ischemic stroke in a cohort including thrombolysed patients. We undertook a case-control study at a single stroke center using data from Acute Stroke Registry and Analyse of Lausanne (ASTRAL). Patients with seizure occurring during the first 7 days following stroke were retrospectively identified. Bi-variable and multivariable statistical analyses were applied to compare cases and randomly selected controls. We identified 28 patients experiencing from seizures in 2,327 acute ischemic strokes (1.2 %). All seizures occurred during the first 72 h. Cortical involvement, thrombolysis with rt-PA, arterial recanalization, and higher initial NIHSS were statistically associated with seizures in univariated analysis. Backward linear regression identified cortical involvement (OR 7.53, 95 % CI 1.6-35.2, p < 0.01) and thrombolysis (OR 4.6, 95 % CI 1.6-13.4, p = 0.01) as being independently associated with seizure occurrence. Overall, 3-month outcome measured by the modified Rankin scale (mRS) was comparable in both groups. In the subgroup of thrombolysed patients, outcome was significantly worse at 3 months in the seizure group with 9/12 (75 %) patients with mRS ≥3, compared to 6/18 (33.3 %) in the seizure-free group (p = 0.03). Acute seizures in acute ischemic stroke were relatively infrequent. Cortical involvement and thrombolysis with rt-PA are the principal risk factors. Seizures have a potential negative influence on clinical outcome in thrombolysed patients.
Resumo:
BACKGROUND: Acute coronary syndromes (ACS) in very young patients have been poorly described. We therefore evaluate ACS in patients aged 35 years and younger. METHODS: In this prospective cohort study, 76 hospitals treating ACS in Switzerland enrolled 28,778 patients with ACS between January 1, 1997, and October 1, 2008. ACS definition included ST-segment elevation myocardial infarction (STEMI), non-ST-segment elevation myocardial infarction (NSTEMI), and unstable angina (UA). RESULTS: 195 patients (0.7%) were 35 years old or younger. Compared to patients>35 years, these patients were more likely to present with chest pain (91.6% vs. 83.7%; P=0.003) and less likely to have heart failure (Killip class II to IV in 5.2% vs. 23.0%; P<0.001). STEMI was more prevalent in younger than in older patients (73.1% vs. 58.3%; P<0.001). Smoking, family history of CAD, and/or dyslipidemia were important cardiovascular risk factors in young patients (prevalence 77.2%, 55.0%, and 44.0%). The prevalence of overweight among young patients with ACS was high (57.8%). Cocaine abuse was associated with ACS in some young patients. Compared to older patients, young patients were more likely to receive early percutaneous coronary interventions and had better outcome with fewer major adverse cardiac events. CONCLUSIONS: Young patients with ACS differed from older patients in that the younger often presented with STEMI, received early aggressive treatment, and had favourable outcomes. Primary prevention of smoking, dyslipidemia and overweight should be more aggressively promoted in adolescence.
Resumo:
Digital holographic microscopy (DHM) is a noninvasive optical imaging technique that provides quantitative phase images of living cells. In a recent study, we showed that the quantitative monitoring of the phase signal by DHM was a simple label-free method to study the effects of glutamate on neuronal optical responses (Pavillon et al., 2010). Here, we refine these observations and show that glutamate produces the following three distinct optical responses in mouse primary cortical neurons in culture, predominantly mediated by NMDA receptors: biphasic, reversible decrease (RD) and irreversible decrease (ID) responses. The shape and amplitude of the optical signal were not associated with a particular cellular phenotype but reflected the physiopathological status of neurons linked to the degree of NMDA activity. Thus, the biphasic, RD, and ID responses indicated, respectively, a low-level, a high-level, and an "excitotoxic" level of NMDA activation. Moreover, furosemide and bumetanide, two inhibitors of sodium-coupled and/or potassium-coupled chloride movement strongly modified the phase shift, suggesting an involvement of two neuronal cotransporters, NKCC1 (Na-K-Cl) and KCC2 (K-Cl) in the genesis of the optical signal. This observation is of particular interest since it shows that DHM is the first imaging technique able to monitor dynamically and in situ the activity of these cotransporters during physiological and/or pathological neuronal conditions.
Resumo:
Astrocytes are responsible for the majority of the clearance of extracellular glutamate released during neuronal activity. dl-threo-beta-benzyloxyaspartate (TBOA) is extensively used as inhibitor of glutamate transport activity, but suffers from relatively low affinity for the transporter. Here, we characterized the effects of (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), a recently developed inhibitor of the glutamate transporter on mouse cortical astrocytes in primary culture. The glial Na(+)-glutamate transport system is very efficient and its activation by glutamate causes rapid intracellular Na(+) concentration (Na(+)(i)) changes that enable real time monitoring of transporter activity. Na(+)(i) was monitored by fluorescence microscopy in single astrocytes using the fluorescent Na(+)-sensitive probe sodium-binding benzofuran isophtalate. When applied alone, TFB-TBOA, at a concentration of 1 muM, caused small alterations of Na(+)(i). TFB-TBOA inhibited the Na(+)(i) response evoked by 200 muM glutamate in a concentration-dependent manner with IC(50) value of 43+/-9 nM, as measured on the amplitude of the Na(+)(i) response. The maximum inhibition of glutamate-evoked Na(+)(i) increase by TFB-TBOA was >80%, but was only partly reversible. The residual response persisted in the presence of the AMPA/kainate receptor antagonist CNQX. TFB-TBOA also efficiently inhibited Na(+)(i) elevations caused by the application of d-aspartate, a transporter substrate that does not activate non-NMDA ionotropic receptors. TFB-TBOA was found not to influence the membrane properties of cultured cortical neurons recorded in whole-cell patch clamp. Thus, TFB-TBOA, with its high potency and its apparent lack of neuronal effects, appears to be one of the most useful pharmacological tools available so far for studying glial glutamate transporters.
Resumo:
INTRODUCTION: Poststroke hyperglycemia has been associated with unfavorable outcome. Several trials investigated the use of intravenous insulin to control hyperglycemia in acute stroke. This meta-analysis summarizes all available evidence from randomized controlled trials in order to assess its efficacy and safety. METHODS: We searched PubMed until 15/02/2013 for randomized clinical trials using the following search items: 'intravenous insulin' or 'hyperglycemia', and 'stroke'. Eligible studies had to be randomized controlled trials of intravenous insulin in hyperglycemic patients with acute stroke. Analysis was performed on intention-to-treat basis using the Peto fixed-effects method. The efficacy outcomes were mortality and favorable functional outcome. The safety outcomes were mortality, any hypoglycemia (symptomatic or asymptomatic), and symptomatic hypoglycemia. RESULTS: Among 462 potentially eligible articles, nine studies with 1491 patients were included in the meta-analysis. There was no statistically significant difference in mortality between patients who were treated with intravenous insulin and controls (odds ratio: 1.16, 95% confidence interval: 0.89-1.49). Similarly, the rate of favorable functional outcome was not statistically different (odds ratio: 1.01, 95% confidence interval: 0.81-1.26). The rates of any hypoglycemia (odds ratio: 8.19, 95% confidence interval: 5.60-11.98) and of symptomatic hypoglycemia (odds ratio: 6.15, 95% confidence interval: 1.88-20.15) were higher in patients treated with intravenous insulin. There was no heterogeneity across the included trials in any of the outcomes studied. CONCLUSIONS: This meta-analysis of randomized controlled trials does not support the use of intravenous insulin in hyperglycemic stroke patients to improve mortality or functional outcome. The risk of hypoglycemia is increased, however.
Resumo:
QUESTION UNDER STUDY: Emergency room (ER) interpretation of the ECG is critical to assessment of patients with acute coronary syndromes (ACS). Our aim was to assess its reliability in our institution, a tertiary teaching hospital. METHODS: Over a 6-month period all consecutive patients admitted for ACS were included in the study. ECG interpretation by emergency physicians (EPs) was recorded on a preformatted sheet and compared with the interpretation of two specialist physicians (SPs). Discrepancies between the 2 specialists were resolved by an ECG specialist. RESULTS: Over the 6-month period, 692 consecutive patients were admitted with suspected ACS. ECG interpretation was available in 641 cases (93%). Concordance between SPs was 87%. Interpretation of normality or abnormality of the ECG was concordant between EPs and SPs in 475 cases (74%, kappa = 0.51). Interpretation of ischaemic modifications was concordant in 69% of cases, and as many ST segment elevations were unrecognised as overdiagnosed (5% each). The same findings occurred for ST segment depressions and negative T waves (12% each). CONCLUSIONS: Interpretation of the ECG recorded during ACS by 2 SPs was discrepant in 13% of cases. Similarly, EP interpretation was discrepant from SP interpretation in 25% of cases, equally distributed between over- and underdiagnosing of ischaemic changes. The clinical implications and impact of medical education on ECG interpretation require further study.
Resumo:
Autophagy is a cellular mechanism for degrading proteins and organelles. It was first described as a physiological process essential for cellular health and survival, and this is its role in most cells. However, it can also be a mediator of cell death, either by the triggering of apoptosis or by an independent "autophagic" cell death mechanism. This duality is important in the central nervous system, where the activation of autophagy has recently been shown to be protective in certain chronic neurodegenerative diseases but deleterious in acute neural disorders such as stroke and hypoxic/ischemic injury. The authors here discuss these distinct roles of autophagy in the nervous system with a focus on the role of autophagy in mediating neuronal death. The development of new therapeutic strategies based on the manipulation of autophagy will need to take into account these opposing roles of autophagy.
Resumo:
Purpose: To compare entero-MDCT with entero-MRI performed for suspicion of acute exacerbation of known Crohn's disease. Methods and Materials: Fifty-seven patients (mean age 33.5) with histologically proven Crohn's disease were prospectively included. They presented with clinical symptoms suggesting acute exacerbation to the emergency department. After oral administration of 1-2 l of 5% methylcellulosis (+syrup), entero-MDCT and entero- MRI were performed on each patient (mean delay 1 day). Three experienced radiologists blindly and independently evaluated each examination for technical quality, eight pathological CT features (bowel wall thickening, pathological wall enhancement, stenosis, lymphadenopathy, mesenteric haziness, intraperitoneal fluid, abscess, fistula) and final main diagnosis. Interobserver agreement kappa was calculated. Sensitivity and specificity resulted from comparison with the reference standard, consisting of operation (n= 30) and long-time follow-up in case of conservative treatment (n=27). Results: Entero-MDCT demonstrated considerably less artefacts than entero-MRI (p 0.0001). In 9 entero-MDCT/-MRI, no activity of Crohn's disease was seen, whereas in 48 entero-MDCT/-MRI active disease could be demonstrated, such as intraperitoneal abscesses (n=11), fistulas (n=13), stenoses (n=23), acute (n=15) or chronic (n=23) inflammation. Interobserver agreement of the three readers was not significantly different between entero-MDCT and -MRI, neither was sensitivity (range 60-89%) and specificity (range 75-100%) for each of the eight pathological features or for the main diagnosis. Conclusion: Entero-MRI is statistically of similar diagnostic value as entero-MDCT for acute complications of Crohn's disease. Therefore, entero-IRM, devoid of harmful irradiation, should become the preferred imaging modality, since we deal with young patients, very likely exposed to frequent imaging controls in the future.
Resumo:
Objective Evaluating the effect of preconditioning with simvastatin in acute kidney injury induced by sepsis. Method Male adult Wistar rats were divided into the following groups: SHAM (control); SHAM+Statin (0.5 mg/kg simvastatin, orally); Sepsis (cecal puncture ligation – CPL); Sepsis+Statin. Physiological parameters, peritoneal fluid culture, renal function, oxidative metabolites, severity of acute kidney injury and animal survival were evaluated. Results The treatment with simvastatin in induced sepsis showed elevation of creatinine clearance with attenuation of generation of oxidative metabolites, lower severity of acute kidney injury and reduced mortality. Conclusion This investigation confirmed the renoprotection with antioxidant principle of the simvastatin in acute kidney injury induced by sepsis in an experimental model.
Resumo:
Wounded leaves communicate their damage status to one another through a poorly understood process of long-distance signalling. This stimulates the distal production of jasmonates, potent regulators of defence responses. Using non-invasive electrodes we mapped surface potential changes in Arabidopsis thaliana after wounding leaf eight and found that membrane depolarizations correlated with jasmonate signalling domains in undamaged leaves. Furthermore, current injection elicited jasmonoyl-isoleucine accumulation, resulting in a transcriptome enriched in RNAs encoding key jasmonate signalling regulators. From among 34 screened membrane protein mutant lines, mutations in several clade 3 GLUTAMATE RECEPTOR-LIKE genes (GLRs 3.2, 3.3 and 3.6) attenuated wound-induced surface potential changes. Jasmonate-response gene expression in leaves distal to wounds was reduced in a glr3.3 glr3.6 double mutant. This work provides a genetic basis for investigating mechanisms of long-distance wound signalling in plants and indicates that plant genes related to those important for synaptic activity in animals function in organ-to-organ wound signalling.