991 resultados para 800
Resumo:
该文在东北地区多年平均的年均温、年降水分布图,海拔高程图、坡度图、坡向图和植被图的基础上,使用地理信息系统和Logistic回归模型的结合,预测3种落叶松(Larixsp.)的"气候-地形"潜在分布区。预测精度用敏感性、指定度和总正确率进行评价,3个树种的敏感性为61%~88%,指定度为80%~99.8%,总正确率为80%~99.8%。年均温、年降水和海拔是控制3种落叶松分布的主要环境因子。采用5种气温变化方案(+1℃、+2℃、+3℃、+4℃和+5℃)和6种降水变化方案(-30%、-20%、-10%、+10%、+20%和+30%),预测气候变化对各个树种潜在分布的影响,探索不同的树种对气候因子的敏感性。结果表明,气温每上升1℃,兴安落叶松(Larixgmelinii)将减少12%;长白落叶松(Larix olgensisvar.changpaiensis)将增加23%;华北落叶松(Larix principis-rupprecntii)将增加500%。降水每增加10%,兴安落叶松将减少12.5%;长白落叶松将增加64%;华北落叶松将减少15%;随气候的"暖干化"(+5℃,-30%),兴安落叶松将向西北方退缩100 km左右;长白落叶松向西北方扩展100 km左右;华北落叶松将向东北方扩展800 km左右。随气候的"暖湿化"(+5℃,+30%),兴安落叶松将向西北退缩400km左右;长白落叶松将向西北方扩展550 km;华北落叶松将向东北方扩展320 km左右。
Resumo:
以东北地区主栽的粳稻(Oryzasativavar.japonica)品种为对象,用美国LI-cor公司生产的Li-6400光合作用测定仪控制光强、CO2浓度和温度等环境条件,阐述了光合作用和气孔导度对光和CO2浓度的响应特征及其耦合关系。结果表明,光合速率随光强或CO2浓度的提高而增大,均遵循米氏响应;在不同CO2浓度下,表观量子效率随CO2浓度的提高而增大,但CO2浓度达到800μmol·mol-1以上时,表观量子效率有所减小;在不同光强下,表观羧化效率也随光的增强而增大,但光强达到1600μmol·
Resumo:
With the rapid increase of the number and influence of floating population in China, it is urgently needed to understand the regional types of China's floating population and their spatial characteristics. After reviewing the current methods for identifying regional types of floating population, this paper puts forward a new composite-index identification method and its modification version which is consisted of two indexes of the net migration rate and gross migration rate. Then, the traditional single-index and the new composite-index identification methods are empirically tested to explore their spatial patterns and characteristics by using China's 2000 census data at county level. The results show: (1) The composite-index identification method is much better than traditional single-index method because it can measure the migration direction and scale of floating simultaneously, and in particular it can identify the unique regional types of floating population with large scale of immigration and emigration. (2) The modified composite-index identification method, by using the share of a region's certain type of floating population to the total in China as weights, can effectively correct the over- or under-estimated errors due to the rather large or small total population of a region. (3) The spatial patterns of different regional types of China's floating population are closely related to the regional differentiation of their natural environment, population density and socio-economic development level. The three active regional types of floating population are mainly located in the eastern part of China with lower elevation, more than 800 mm precipitation, rather higher population densities and economic development levels.
Resumo:
黑白仰鼻猴(Rhinopithecus bieti)目前分布在金沙江和澜沧江之间横断山脉的一个狭小的区域范围内(26o14’N-29o20’N,99o15’E-99o37’E),海拔2 600 m(南部) - 4 200 m(北部)之间;目前大约有15 群,数量估计约1700 个体。是我国特有的灵长类之一,为国家Ⅰ级保护动物,在IUCN(世界自然保护联盟)2007 受威胁物种红皮书中被列为濒危物种并处于小种群、高度片断化状态(ENC 2a)。西藏是黑白仰鼻猴分布的北端,约有300 个体。基于前人的野外调查和报道确认,暗针叶林和针阔叶混交林是其适宜栖息地,人们在低海拔和高海拔砍伐或者火烧暗针叶林和针阔叶混交林的产物-农田和夏季牧场正在逐渐侵蚀着其适宜栖息地。尽管当地藏族村民信奉佛教,禁止猎杀任何野生动物,但是近些年来,黑白仰鼻猴栖息地不断丧失,这与牧场和农田扩张、当地人们薪柴采集等活动有关。黑白仰鼻猴西藏种群主要在原始暗针叶林和和针阔叶混交林里活动。为了评估该物种的栖息地现状和变化情况,我们通过野外调查工作,应用GIS 和RS 技术,分别解译了1986 年、1992 年、1997 年、2001 年和2006 年的Landsat TM/ETM+ 冬季卫星影像,并对解译结果进行了计算和分析,得到了以下西藏种群栖息地的主要结果: 1)现有暗针叶林(包括原始针叶林和针阔混交林)面积是30 500 hm2 ,夏季牧场面积是13 100 hm2 ,农田面积是6 400 hm2 ;2)在过去20 年间(1986-2006 年),暗针叶林面积减少了14.6%(5 200 hm2 ),夏季牧场面积增加了47.2%(4 200 hm2 ),农田面积增加了14.3%(800 hm2 );3)在过去20 年间,暗针叶林的斑块数量增加了68.4%,平均斑块面积下降了49.3%(从1986 年的15.1 hm2 下降到2006 年的7.6 hm2 ),最大的斑块指数下降了54.9%;景观丰富度并没有变化,但Shannon 多样性指数和Shannon 均匀度指数分别增加了2.7%。这都表明栖息地丧失和破碎化程度越来越严重。在上述结果的基础上,我们进一步对栖息地变化的主要原因进行了初步分析和探讨。通过暗针叶林面积、夏季牧场面积和农田面积和当地各乡村的家庭户数、人口数量、平均家庭人口数和牲畜存栏数等统计数据的Spearman秩相关分析表明,暗针叶林面积变化分别与当地的人口数量、家庭户数和平均家庭人口数呈显著负相关,与牲畜存栏数呈负相关;而夏季牧场面积和农田面积都分别与人口数量、家庭户数和平均家庭人口数呈显著正相关,与牲畜存栏数呈正相关。这意味着在目前当地传统生产方式基本未发生改变的情况下,因人口数量增加所带来的生产等活动强度的增加是黑白仰鼻猴栖息地丧失与破碎化加剧的主要原因(R2 = 0.972);当地人类经济活动的增加,如牧场和农田扩张,牲畜存栏数增加以及薪材采集和木质建筑等导致了栖息地丧失、退化和破碎化。但另一方面,当地一妻多夫的婚配制度(仅在西藏部分地区仍有保留)对黑白仰鼻猴的栖息地保护有积极的作用,因为大家庭(家庭人口数)的人均资源消耗,如薪柴需求、房屋数量、牧场和农田等,都比小家庭低。在过去20 年中(1983-2003 年),当地家庭户数的增加比人口数量增加要慢,这对黑白仰鼻猴的栖息地保护起到了一定的积极作用。因此,西藏种群作为单独的遗传亚种群,其保护工作任重而道远。
Resumo:
Lu3Ga5O12:Eu3+, Lu3Ga5O12:Tb3+, and Lu3Ga5O12:Pr3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence, and cathodoluminescence spectra were utilized to characterize the synthesized phosphors. The XRD results reveal that the sample begins to crystallize at 800 degrees C and fully crystallined pure Lu3Ga5O12 phase can be obtained at 1000 degrees C. The FESEM image indicates that the phosphor sample is composed of aggregated rice grainlike particles with sizes around 80-120 nm.
Resumo:
The reversible fabrication of positive and negative nanopatterns on 1-hexadecanethiol (HDT) self-assembled monolayers (SAMs) on Au(111) was realized by bias-assisted atomic force microscopy (AFM) nanolithography using an ethanol-ink tip. The formation of positive and negative nanopatterns via the bias-assisted nanolithography depends solely on the polarity of the applied bias, and their writing speeds can reach 800,um/s and go beyond 1000 mu m/s, respectively. The composition of the positive nanopatterns is gold oxide and the nanometer-scale gold oxide can be reduced by ethanol to gold, as proved by X-ray photoelectron spectroscopy (XPS) analysis, forming the negative nanopatterns which can be refilled with HDT to recover the SAMs.
Resumo:
Fast densification of 8YSZ ceramics under a high pressure of 4.5 GPa was carried out at different temperatures (800, 1000, 1450 degrees C), by which a high relative density above 92% could be obtained. FT-Raman spectra indicate that the 8YSZ underwent a phase transition from partially tetragonal to partially cubic phase as temperatures increase from 1000 to 1450 degrees C when sintering under high pressure. The electrical properties of the samples under different high-pressure sintering conditions were measured by complex impedance method. The total conductivity of 0.92 x 10(-2) S cm(-1) at 800 degrees C has been obtained for 8YSZ under high pressure at 1450 degrees C, which is about 200 degrees C lower than that of the samples prepared by conventional pressureless sintering.
Resumo:
Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals have been successfully synthesized by a solvothermal process followed by a subsequent heat treatment at 800 degrees C. Powder X-ray diffraction, transmission electron microscopy, upconversion photoluminescence spectra, and kinetic decay were used to characterize the samples. Under single-wavelength diode laser excitation of 980 nm, the bright blue emissions of Lu2O3:Yb3+, Tm3+ nanocrystals near 477 and 490 nm were observed due to the (1)G(4)-> H-3(6) transition of Tm3+. The bright green UC emissions of Lu2O3:Er3+ nanocrystals appeared near 540 and 565 nm were observed and assigned to the H-2(11/2)-> I-4(15/2) and S-4(3/2)-> I-4(15/2) transitions, respectively, of Er3+. The ratio of the intensity of green luminescence to that of red luminescence decreases with an increase of concentration of Yb3+ in Lu2O3:Er3+ nanocrystals.
Resumo:
LaAlO3:Tm3+ and LaAlO3:Tb3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. The XRD results reveal that the fully crystalline pure LaAlO3 Phase can be obtained at 800 degrees C. The FE-SEM image indicates that the phosphor samples are composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light (230 nm) and low-voltage electron beams (1-3 kV), the LaAlO3:Tm3+ and LaAlO3:Tb3+ phosphors show the characteristic emissions of Tb3+ (D-1(2)-> H-3(6,4),F-3(4) transitions) and Tm3+ (D-5(3,4)-> F-7(6,5,4,3) transitions) respectively. The CL of the LaAlO3:Tm3+ phosphors have high color purity and comparable intensity to the Y2SiO5:Ce3+ commercial product, and the CL colors of Tb3+-doped LaAlO3 phosphors can be tuned from blue to green by changing the doping concentration of Tb3+ to some extent.
Resumo:
LaInO3:Eu3+ phosphors were prepared by a Pechini sol-gel process. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the synthesized phosphors. XRD results reveal that the sample begins to crystallize at 600 degrees C and pure LaInO3 phase can be obtained at 800 degrees C. The crystallinity increases upon raising the annealing temperature. The FE-SEM images indicate that LaInO3:Eu3+ phosphors are composed of fine and spherical grains around 40-80 nm in size. Under the excitation of UV light and low-voltage electron-beams, LaInO3:Eu3+ phosphors show the characteristic emissions of the Eu3+ (D-5(J)-F-7(J) J,J(')=0,1,2,3 transitions). The luminescence colors can be tuned from yellowish warm white to red by changing the doping concentration of Eu3+ to some extent. The corresponding luminescence mechanisms have been proposed.
Resumo:
One-dimensional Mn2+-doped Zn2SiO4 rnicrobelts and microfibers were prepared by a simple and cost-effective electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The XRD and DTA results show that the Zn2SiO4 phase begins to crystallize at 800 degrees C and crystallizes completely around 1000 degrees C. SEM results indicate that the as-prepared microbelts/fibers are smooth, whose diameters decrease with increasing the annealing temperature. The average diameter of the Zn2SiO4:Mn2+ microfibers annealed at 1000 degrees C is 0.32 mu m, and their lengths reach up to several millimeters. The average width and thickness of the Zn2SiO4:Mn2+ microbelts fired at 1000 degrees C are around 0.48 and 0.24 mu m, respectively.
Resumo:
CaIn2O4:Eu3+ phosphors were prepared by a Pechini so-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL), cathodoluminescence (CL) spectra as well as lifetimes were utilized to characterize the samples. The XRD results reveal that the samples begin to crystallize at 800 degrees C, and the crystallinity increases upon raising the annealing temperature. The FE-SEM images indicate that the CaIn2O4:Eu3+ samples consist of fine and spherical grains with size around 200-400 nm. Under the excitation of ultraviolet light and low-voltage electron beams, the CaIn2O4:Eu3+ phosphors show the characteristic emissions of Eu3+ ((DJ-7FJ ')-D-5 J, J ' = 0, 1, 2, 3 transitions). The luminescence color can be tuned from white to orange to red by adjusting the doping concentration of EU3+. The corresponding luminescence mechanisms have been proposed.
Resumo:
Nanocrystalline ZrO2 fine powders were prepared via the Pechini-type sol-gel process followed by annealing from 500 to 1000 degrees C. The obtained ZrO2 samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), and photoluminescence spectra (PL), respectively. The phase transition process from tetragonal (T) to monoclinic (M) was observed for the nanocrystalline ZrO2 powders in the annealing process, accompanied by the change of their photoluminescence properties. The 500 degrees C annealed ZrO2, powder with tetragonal structure shows an intense whitish blue emission (lambda(max) = 425 nm) with a wide range of excitation (230-400 nm). This emission decreased in intensity after being annealed at 600 degrees C (T + M-ZrO2) and disappeared at 700 (T + M-ZrO2), 800 (T + M-ZrO2), and 900 degrees C (M-ZrO2). After further annealing at 1000 degrees C (M-ZrO2), a strong blue-green emission appeared again (lambda(max) = 470 nm).
Resumo:
Ce6-xDyxMoO15-delta (0.0 <= x <= 1.8) were synthesized by modified sol-gel method. Structural and electrical properties were investigated by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The XRD patterns showed that the materials were single phase with a cubic fluorite structure. Impedance spectroscopy measurement in the temperature range between 350 degrees C and 800 degrees C indicated a sharp increase in conductivity for the system containing small amount of Dy2O3. The Ce5.6Dy0.4MoO15-delta detected to be the best conducting phase with the highest conductivity (sigma(t) = 8.93 x 10(-3) S cm(-1)) is higher than that of Ce5.6Sm0.4MoO15-delta (sigma(t) = 2.93 x 10(-3) S cm(-1)) at 800 degrees C, and the corresponding activation energy of Ce5.6Dy0.4MoO15-delta (0.994 eV) is lower than that of Ce5.6Sm0.4MoO15-delta (1.002 eV).