981 resultados para 4000
Resumo:
In September 2008 several cores (68 cm-115 cm length) (water depth: 93 m) were retrieved from Lake Nam Co (southern-central Tibetan Plateau; 4718 m a.s.l.). This study focuses on the interpretation of high-resolution (partly 0.2 cm) data from three gravity cores and the upper part of a 10.4 m long piston core, i.e., the past 4000 cal BP in terms of lake level changes, hydrological variations in the catchment area and consequently variations in monsoon strength. A wide spectrum of sedimentological, geochemical and mineralogical investigations was carried out. Results are presented for XRF core-scans, grain size distribution, XRD-measurements and SEM-image analyses. These data are complemented by an age-depth model using 210Pb and 137Cs analyses as well as eleven AMS-14C-ages. This model is supported by excellent agreement between secular variations determined on one of the gravity cores to geomagnetic field models. This is a significant improvement of the chronology as most catchments of lacustrine systems on the Tibetan Plateau contain carbonates resulting in an unknown reservoir effect for radiocarbon dates. The good correlation of our record to the geomagnetic field models confirms our age-depth model and indicates only insignificant changes in the reservoir effect throughout the last 4 ka. High (summer-) monsoonal activity, i.e. moist environmental conditions, was detected in our record between approximately 4000 and 1950 cal BP as well as between 1480 and 1200 cal BP. Accordingly, lower monsoon activity prevails in periods between the two intervals and thereafter. This pattern shows a good correlation to the variability of the Indian Ocean Summer Monsoon (IOSM) as recorded in a peat bog ~1000 km in NE direction from Lake Nam Co. This is the first time that such a supra regional homogenous monsoon activity is shown on the Tibetan Plateau and beyond. Finally our data show a significant lake level rise after the Little Ice Age (LIA) in Lake Nam Co which is suggested to be linked to glacier melting in consequence of rising temperatures occurring on the whole Tibetan Plateau during this time.
Resumo:
Investigations of piston cores from the Vema Channel and lower flanks of the Rio Grande Rise suggest the presence of episodic flow of deep and bottom water during the Late Pleistocene. Cores from below the present-day foraminiferal lysocline (at ~4000 m) contain an incomplete depositional record consisting of Mn nodules and encrustations, hemipelagic clay, displaced high-latitude diatoms, and poorly preserved heterogeneous microfossil assemblages. Cores from the depth range between 2900 m and 4000 m contain an essentially complete Late Pleistocene record, and consist of well-defined carbonate dissolution cycles with periodicities of ~100,000 years. Low carbonate content and increased dissolution correspond to glacial episodes, as interpreted by oxygen isotopic analysis of bulk foraminiferal assemblages. The absence of diagnostic high-latitude indicators (Antarctic diatoms) within the dissolution cyclss, however, suggests that AABW may not have extended to significantly shallower elevations on the lower flanks of the Rio Grande Rise during the Late Pleistocene. Therefore episodic AABW flow may not necessarily be the mechanism responsible for producing these cyclic events. This interpretation is also supported by the presence of an apparently complete Brunhes depositional record in the same cores, suggesting current velocities insufficient for significant erosion. Fluctuations in the properties and flow characteristics of another water mass, such as NADW, may be involved. The geologic evidence in core-top samples near the present-day AABW/NADW transition zone is consistent with either of two possible interpretations of the upper limit of AABW on the east flank of the channel. The foraminiferal lysocline, at ~4000 m, is near the top of the benthic thermocline and nepheloid layer, and may therefore correspond to the upper limit of relatively corrosive AABW. On the other hand, the carbonate compensation depth (CDD) at ~4250 m, which corresponds to the maximum gradient in the benthic thermocline, is characterized by rapid deposition of relatively fine-grained sediment. Such a zone of convergence and preferential sediment accumulation would be expected near the level of no motion in the AABW/NADW transition zone as a consequence of Ekman-layer veering of the mean velocity vector in the bottom boundary layer. It is possible that both of these interpretations are in part correct. The "level of no motion'' may in fact correspond to the CCD, while at the same time relatively corrosive water of Antarctic origin may mix with overlying NADW and therefore elevate the foraminifera] lysocline to depths above the level of no motion. Closely spaced observations of the hydrography and flow characteristics within the benthic thermocline will be required in order to use sediment parameters as more precise indicators of paleo-circulation.
Resumo:
A 9.14 m long sediment sequence was recovered from Lake Fryxell, Taylor Valley, southern Victoria Land, Antarctica, and investigated for its chronology and sedimentological, mineralogical, and biogeochemical changes. The basal part of the sequence is dominated by coarse clastic matter, i.e., mainly sand. The sediment composition suggests that a lake existed in Fryxell basin during the Middle Weichselian by ca. 48,000 cal. year BP. After a short period of lake-level lowstand ca. 43,000 cal. year BP, lower Taylor Valley became occupied by the proglacial Lake Washburn, which was at least partly supplied by meltwater and sediments from the Ross Ice Sheet that was advanced to the mouth of Taylor Valley. Evaporation of Lake Washburn to lower levels started during the Last Glacial Maximum at ca. 22,000 cal. year BP, long before the Ross Ice Sheet retreated significantly. Lake-level lowering was discontinuous with a series of high and low stands. From ca. 4000 cal. year BP environmental conditions were similar to those of today and lower Fryxell basin was occupied by a small lake. This lake evaporated to a saline or hypersaline pond between ca. 2500 and 1000 cal. year BP and refilled subsequently.
Resumo:
Global change is affecting marine ecosystems through a combination of different stressors such as warming, ocean acidification and oxygen depletion. Very little is known about the interactions among these factors, especially with respect to gelatinous zooplankton. Therefore, in this study we investigated the direct effects of pH, temperature and oxygen availability on the moon jellyfish Aurelia aurita, concentrating on the ephyral life stage. Starved one-day-old ephyrae were exposed to a range of pCO2 (400-4000 ppm) and three different dissolved oxygen levels (from saturated to hypoxic conditions), in two different temperatures (5 and 15 °C) for 7 days. Carbon content and swimming activity were analysed at the end of the incubation period, and mortality noted. General linearized models were fitted through the data, with the best fitting models including two- and three-way interactions between pCO2, temperature and oxygen concentration. The combined effect of the stressors was small but significant, with the clearest negative effect on growth caused by the combination of all three stressors present (high temperature, high CO2, low oxygen). We conclude that A. aurita ephyrae are robust and that they are not likely to suffer from these environmental stressors in a near future.