990 resultados para 327.73
Resumo:
http://digitalcommons.fiu.edu/com_images/1078/thumbnail.jpg
Resumo:
Deep sea manganese nodules from the Central Pacific Basin are mainly composed of 10Å manganite and d-MnO2 Two zones equivalent to the minerals are evidently distinguishable according to their optical properties. Microscopic and microprobe analyses revealed quite different chemical compositions and textnral characteristics of the two zones. These different feature of the two zones of nodules suggest the different conditions under which they were formed. Concentrations of 11 metal elements in the zones and inter-element relationships show that the 10Å manganite zone is a monomineralic oxide phase containing a large amount of manganese and minor amounts of useful metals, and that the d-MnO2 zone which is apparently homogeneous under the microscope is a mixture of three or more different minerals. The chemical characteristics of the two zones can explain the variation of bulk composition of deep sea manganese nodules and inter-element relationships previously reported, suggesting that the bulk compositions are attributable to the mixing of the 10Å manganite and d-MnO2 zones in various ratios. Characteristic morphology and surface structure of some types of nodules and their relationships to chemistry are also attribut able to the textural and chemical features of the above mentioned two phases. Synthesis of hydrated manganese oxides was carried out in terms of the formation of manganese minerals in the ocean. The primary product which is an equivalent to d-MnO2 was precipitated from Mn 2+ -bearing alkaline solution under oxigenated condition by air bubbling at one atmospheric pressure and room temperature. The primary product was converted to a l0Å manganite equivalent by contact with Ni 2+, Cu 2++ or CO2+ chloride solutions. This reaction caused the decrease of Ni2+, Cu2+ or CO2+ concentrations and the increase of Na+ concentration in the solution. The reaction also proceeded even in diluted solutions of nickel chloride and resulted in a complete removal of Ni2+ from the solution. Reaction products were exclusively 10Å manganite equivalents and their chemical compositions were very similar to those of 10Å manganite in manganese nodules. The maximum value of(Cu+Ni+Co)/Mn ratio of 10Å manganite zones in manganese nodules is 0.16, and the Ni/Mn ratio of synthetic 10Å manganite ranges from 0.15 to 0.18 with the average of 0.167.
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
Trägerband: Inc. oct. 473; 'Homil. cath. 686a'; Vorbesitzer: Dominikanerkloster Frankfurt am Main
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Carbon isotopic measurements on the benthic foraminiferal genus Cibicidoides document that mean deep ocean delta13C values were 0.46 per mil lower during the last glacial maximum than during the Late Holocene. The geographic distribution of delta13C was altered by changes in the production rate of nutrient-depleted deep water in the North Atlantic. During the Late Holocene, North Atlantic Deep Water, with high delta13C values and low nutrient values, can be found throughout the Atlantic Ocean, and its effects can be traced into the southern ocean where it mixes with recirculated Pacific deep water. During the glaciation, decreased production of North Atlantic Deep Water allowed southern ocean deep water to penetrate farther into the North Atlantic and across low-latitude fracture zones into the eastern Atlantic. Mean southern ocean delta13C values during the glaciation are lower than both North Atlantic and Pacific delta13C values, suggesting that production of nutrient-depleted water occurred in both oceans during the glaciation. Enriched 13C values in shallow cores within the Atlantic Ocean indicate the existence of a nutrient-depleted water mass above 2000 m in this ocean.
Resumo:
On the basis of a long term research of the authors a database model of grain size composition of unlithified marine and ocean bottom sediments has been created. An improved method of water-mechanical analysis has been offered. Grain size parameters of main types of bottom sediments have been measured and calculated. The genetic interpretation of results and regularities of sandy, aleuritic and pelitic material in basins of sedimentation are under discussion.
Resumo:
Megabenthos plays a major role in the overall energy flow on Arctic shelves, but information on megabenthic secondary production on large spatial scales is scarce. Here, we estimated for the first time megabenthic secondary production for the entire Barents Sea shelf by applying a species-based empirical model to an extensive dataset from the joint Norwegian? Russian ecosystem survey. Spatial patterns and relationships were analyzed within a GIS. The environmental drivers behind the observed production pattern were identified by applying an ordinary least squares regression model. Geographically weighted regression (GWR) was used to examine the varying relationship of secondary production and the environment on a shelfwide scale. Significantly higher megabenthic secondary production was found in the northeastern, seasonally ice-covered regions of the Barents Sea than in the permanently ice-free southwest. The environmental parameters that significantly relate to the observed pattern are bottom temperature and salinity, sea ice cover, new primary production, trawling pressure, and bottom current speed. The GWR proved to be a versatile tool for analyzing the regionally varying relationships of benthic secondary production and its environmental drivers (R² = 0.73). The observed pattern indicates tight pelagic? benthic coupling in the realm of the productive marginal ice zone. Ongoing decrease of winter sea ice extent and the associated poleward movement of the seasonal ice edge point towards a distinct decline of benthic secondary production in the northeastern Barents Sea in the future.