981 resultados para 320301 Clinical Chemistry
Resumo:
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H-2)(L)][BF4](2) (dppm = Ph2PCH2PPh2; L = phosphite) have been prepared by protonating the precursor hydride complexes cis-[(dPPM)(2)Ru(H)(L)][BF4] using HBF4.Et2O. The precursor hydride complexes have been obtained from trans-[(dppm)(2)Ru(H)(L)][BF4][(L = phospfiite) via a rare acid-catalysed isomerization reaction in six coordinate species. The trans-[(dppm)(2)Ru(H)(L)][BF4] complexes (L = phosphine) upon protonation gave the isomerized derivatives, however, further addition of acid resulted in a five-coordinate species, [(dppm)(2)RuCl](+) presumably via an intermediate phosphine dihydrogen complex. The electronic as well as the steric properties of the co-ligands seem to strongly influence the structure-reactivity behaviour of this series of complexes.
Resumo:
The utility of tetrathiomolybdate in a variety of organic transformations is presented in this account. The sulfur transfer ability of tetrathiomolybdate is exploited in the synthesis of organic disulfides under mild reaction conditions. The induced internal redox reactions associated with tetrathiomolybdate have been thoroughly exploited in developing various methodologies, which include the reduction of organic azides, synthesis of diselenides, cyclic imines, thioamides, and thiolactams. In addition, novel deprotection strategies using tetrathiomolybdate have been developed to cleave the propargyl and propargyloxy carbonyl (POC) protecting groups. Tetrathiomolybdate mediated tandem sulfur transfer-reduction-Michael reactions have been applied to the synthesis of sulfur containing bicyclic systems. Furthermore, the reactions in the solid state and the reactions in water medium assisted by tetrathiomolybdate have greatly simplified the synthesis of organic disulfides.
Resumo:
An isothermal section of the phase diagram for the system Eu - Pd - O at 1223 K has been established by equilibration of samples representing 20 different compositions, and phase identification after quenching by optical and scanning electron microscopy, X-ray powder diffraction, and energy dispersive spectroscopy. Three ternary oxides, Eu4PdO7, Eu2PdO4, and Eu2Pd2O5, were identified. Liquid alloys and the intermetallic compounds EuPd2 and EuPd3 were found to be in equilibrium with EuO. The compound EuPd3 was also found to coexist separately with Eu3O4 and Eu2O3. The oxide phase in equilibrium with EuPd5 and Pd rich solid solution was Eu2O3. Based on the phase relations, four solid state cells were designed to measure the Gibbs energies of formation of the three ternary oxides in the temperature range from 925 to 1350 K. Although three cells are sufficient to obtain the properties of the three compounds, the fourth cell was deployed to crosscheck the data. An advanced version of the solid state cell incorporating a buffer electrode with yttria stabilised zirconia solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode was used for high temperature thermodynamic measurements. Equations for the standard Gibbs energy of formation of the interoxide compounds from their component binary oxides Eu2O3 with C type structure and PdO have been established. Based on the thermodynamic information, isothermal chemical potential diagrams and isobaric phase diagrams for the system Eu - Pd - O have been developed.
Resumo:
The diphosphazane ligands of the type, (C20H12O2)PN(R)P(E)Y2 (R = CHMe2 or (S)-*CHMePh; E = lone pair or S; Y2 = O2C20H12 or Y = OC6H5 or OC6H4Me-4 or OC6H4OMe-4 or OC6H4But-4 or C6H5) bearing axially chiral 1,1'-binaphthyl-2,2′-dioxy moiety have been synthesised. The structure and absolute configuration of a diastereomeric palladium complex, [PdCl2{ηsu2}-((O2C20H12)PN((S)-*CHMePh)PPh2] has been determined by X-ray crystallography. The reactions of [CpRu(PPh3)2Cl] with various symmetrical and unsymmetrical diphosphazanes of the type, X2PN(R)PYY′ (R = CHMe2 or (S)-*CHMePh; X = C6H5 or X2 = O2C20H12; Y=Y′= C6H5 or Y = C6H5, Y′ = OC6H4Me-4 or OC6H3Me2-3,5 or N2C3HMe2-3,5) yield several diastereomeric neutral or cationic half-sandwich ruthenium complexes which contain a stereogenic metal center. In one case, the absolute configuration of a trichiral ruthenium complex, viz. [Cp*Ruη2-Ph2PN((S)-*CHMePh)*PPh (N2C3HMe2-3,5)Cl] is established by X-ray diffraction. The reactions of Ru3(CO)12 with the diphosphazanes (C20H12O2)PN(R)PY2 (R = CHMe2orMe; Y2=O2C20H12or Y= OC6H5 or OC6H4Me-4 or OC6H4OMe-4 or OC6H4But-4 or C6H5) yield the triruthenium clusters [Ru3(CO)10{η-(O2C20H12)PN(R)PY2}], in which the diphosphazane ligand bridges two metal centres. Palladium allyl chemistry of some of these chiral ligands has been investigated. The structures of isomeric η3-allyl palladium complexes, [Pd(η3-l,3-R′2-C3H3){η2-(rac)-(02C20H12)PN(CHMe2)PY2}](PF6) (R′ = Me or Ph; Y = C6H5 or OC6H5) have been elucidated by high field two-dimensional NMR spectroscopic and X-ray crystallographic studies.