996 resultados para 240201 Theoretical Physics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perturbation theory in the lowest non-vanishing order in interelectron interaction has been applied to the theoretical investigation of double-ionization decays of resonantly excited single-electron states. The formulae for the transition probabilities were derived in the LS coupling scheme, and the orbital angular momentum and spin selection rules were obtained. In addition to the formulae, which are exact in this order, three approximate expressions, which correspond to illustrative model mechanisms of the transition, were derived as limiting cases of the exact ones. Numerical results were obtained for the decay of the resonantly excited Kr 1 3d^{-1}5p[^1P] state which demonstrated quite clearly the important role of the interelectron interaction in double-ionization processes. On the other hand, the results obtained show that low-energy electrons can appear in the photoelectron spectrum below the ionization threshold of the 3d shell. As a function of the photon frequency, the yield of these low-energy electrons is strongly amplified by the resonant transition of the 3d electron to 5p (or to other discrete levels), acting as an intermediate state, when the photon frequency approaches that of the transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absolute Kr 4s-electron photoionization cross sections as a function of the exciting-photon energy were measured by photon-induced fluorescence spectroscopy (PIFS) at improved primary-energy resolution. The cross sections were determined from threshold to 33.5 eV and to 90 eV with primary-photon bandwidths of 25 meV and 50 meV, respectively. The measurements were compared with experimental data and selected theoretical calculations for the direct Kr 4s-electron photoionization cross sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoionization cross sections for the production of the Kr II 4s state and Kr II satellite states were studied in the 4s ionization threshold region. The interference of direct photoionization and ionization through the autoionization decay of doubly-excited states was considered. In the calculations of doubly-excited state energies, performed by a configuration interaction technique, the 4p spin-orbit interaction and the (Kr II core)-(excited electron) Coulomb interaction were included. The theoretical cross sections are in many cases in good agreement with the measured values. Strong resonant features in the satellite spectra with threshold energies greater than 30 eV are predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total energy SCF calculations were performed for noble gas difluorides in a relativistic procedure and compared with analogous non-relativistic calculations. The discrete variational method with numerical basis functions was used. Rather smooth potential energy curves could be obtained. The theoretical Kr - F and Xe - F bond distances were calculated to be 3.5 a.u. and 3.6 a.u. which should be compared with the experimental values of 3.54 a.u. and 3.7 a.u. Although the dissociation energies are off by a factor of about five it was found that ArF_2 may be a stable molecule. Theoretical ionization energies for the outer levels reproduce the experimental values for KrF_2 and XeF_2 to within 2 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study of the electronic structure and bonding of the pentahalides of group 5 elements V, Nb, Ta, and element 105, hahnium (and Pa) has been carried out using relativistic molecular cluster Dirac-Slater discrete-variational method. A number of calculations have been performed for different geometries and molecular bond distances. The character of the bonding has been analyzed using the Mulliken population analysis of the molecular orbitals. It is shown that hahnium is a typical group 5 element. In a great number of properties it continues trends in the group. Some peculiarities in the electronic structure of HaCl_5 result from relativistic effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic structures of MOCl_3 and MOBr_3 molecules, where M = V, Nb, Ta, Pa, and element 105, hahnium, have been calculated using the relativistic Dirac-Slater discrete variational method. The character of bonding has been analyzed using the Mulliken population analysis of the molecular orbitals. It was shown that hahnium oxytrihalides have similar properties to oxytrihalides of Nb and Ta and that hahnium has the highest tendency to form double bond with oxygen. Some peculiarities in the electronic structure of HaOCl_3 and HaOBr_3 result from relativistic effects. Volatilities of the oxytrihalides in comparison with the corresponding pentahalides were considered using results of the present calculations. Higher ionic character and lower covalency as well as the presence of dipole moments in MOX_3 (X = Cl, Br) molecules compared to analogous MX_5 ones are the factors contributing to their lower volatilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quasimolecular M radiation emitted in collisions between Xe ions of up to 6 MeV energy and solid targets of Ta, Au, Pb and Bi, as well as a gaseous target of Pb(CH_3)_4, has been studied. Using a realistic theoretical correlation diagram, a semiquantitative explanation of the observed peak structure is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ground state (J = 0) electronic correlation energy of the 4-electron Be-sequence is calculated in the Multi-Configuration Dirac-Fock approximation for Z = 4-20. The 4 electrons were distributed over the configurations arising from the 1s, 2s, 2p, 3s, 3p and 3d orbitals. Theoretical values obtained here are in good agreement with experimental correlation energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of relativistic (Dirac-Slater and Dirac-Fock) and nonrelativistic (Hartree-Fock-Slater) atomic and molecular calculations have been compared for the group 5 elements Nb, Ta, and Ha and their compounds MCl_5, to elucidate the influence of relativistic effects on their properties especially in going from the 5d element Ta to the 6d element Ha. The analysis of the radial distribution of the valence electrons of the metals for electronic configurations obtained as a result of the molecular calculations and their overlap with ligands show opposite trends in behavior for ns_1/2, np_l/2, and (n -1 )d_5/2 orbitals for Ta and Ha in the relativistic and nonrelativistic cases. Relativistic contraction and energetic stabilization of the ns_1/2 and np_l/2 wave functions and expansion and destabilization of the (n-1)d_5/2 orbitals make hahnium pentahalide more covalent than tantalum pentahalide and increase the bond strength. The nonrelativistic treatment of the wave functions results in an increase in ionicity of the MCl_5 molecules in going from Nb to Ha making element Ha an analog of V. Different trends for the relativistic and nonrelativistic cases are also found for ionization potentials, electronic affinities, and energies of charge-transfer transitions as well as the stability of the maximum oxidation state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlation energies for all isoelectronic sequences of 2 to 20 electrons and Z = 2 to 25 are obtained by taking differences between theoretical total energies of Dirac-Fock calculations and experimental total energies. These are pure relativistic correlation energies because relativistic and QED effects are already taken care of. The theoretical as well as the experimental values are analysed critically in order to get values as accurate as possible. The correlation energies obtained show an essentially consistent behaviour from Z = 2 to 17. For Z > 17 inconsistencies occur indicating errors in the experimental values which become very large for Z > 25.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the observation of K\alpha\alpha X-rays of Si, produced in collisions of 15-28 MeV Si projectiles with various target atoms in the range Z =6 to 29. Energy shifts of X-rays were measured and are compared with theoretical predictions. Cross section ratios for emission of K\alpha\alpha and K\alpha radiation are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relativistic molecular calculations within the Dirac-Slater scheme have been used in a study of the electronic structure of 6d-metal superheavy hexafluorides. The theoretical results are compared with calculations and measurements of the homolog 4d- and 5d-metal hexafluorides. Large spin-orbit splitting dominates the electronic structure and even has the same order of magnitude as the crystal-field splitting for the valence electrons for the superheavy molecules. Ionization energies have been calculated using a transition state procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time dependent Dirac equation which describes a heavy ion-atom collision system is solved via a set of coupled channel equations with energy eigenvalues and matrix elements which are given by a selfconsistent field many electron calculation. After a brief discussion of the theoretical approximations and the connection of the many particle with the one particle interpretation we discuss first results for the systems F{^8+} - Ne and F{^6+} - Ne. The resulting P(b) curves for the creation of a Ne K-hole are in good agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various approximations which are possible for the theoretical description of colliding ion-atom systems are reviewed. With the emphasis on relativistic influences, a few comparisons of experimental results with relativistic calculations are made.